scholarly journals A practical dynamic analysis method of continuous girder bridge with spring connections on spring supports.

1985 ◽  
pp. 395-403 ◽  
Author(s):  
Tameo KOBORI ◽  
Masakuni KUBO
2013 ◽  
Vol 838-841 ◽  
pp. 1082-1086
Author(s):  
Xue Xian Sun ◽  
Zhen Liu

This paper apply displacement back analysis theory for geometry form monitoring and calculating work of segmental construction of prestressed concrete continuous girder bridge, making use of displacement back analysis method to optimize bridge structure parameters, ensuring accuracy of geometry form control with calculated results of every girder segment in entire construction. This method is used in the construction monitoring and supervision for Yuanyichang circular curved rigid frame bridge on Pingan-Adai highway, to make the closure accuracy and the bridge geometry form reaches the effect of aspiration. Through the result of the finished bridge, what we can obtain is that the displacement back analysis theory could fulfill the requirement of factual project and be widely used for geometry monitoring of segmental construction of prestressed concrete continuous girder bridge.


2011 ◽  
Vol 131 (2) ◽  
pp. 166-170 ◽  
Author(s):  
Yoshihiro Nakata ◽  
Hiroshi Ishiguro ◽  
Katsuhiro Hirata

Author(s):  
Qiwen Jin ◽  
Zheng Liu

In-service bridges, under long-term service operational environment, are usually accompanied by different damage types. Traditional method for the measure point arrangement of in-service bridge SHM is usually based on engineering experience. A large number of SHM sensors are usually arranged on the structure, followed by a high engineering cost and a heavy maintenance task. These sensors will also produce large amounts of data, creating a challenge for operators requiring to deal with data processing in an effective manner. This study serves as a part of the series of studies on the measure point arrangement strategy of in-service bridge SHM. In this study, the SHM sensor measure point arrangement of in-service continuous girder bridge (a common structural style of high way bridge in China) is proposed. Two-span continuous beam, three-span continuous beam, and four-span continuous beam are taken as examples. Detailed comparison and verification are also performed with consideration of numerical simulation and previous studies. Different traffic speeds and different bridge spans are considered. The effect of different damage locations and different damage degrees are analyzed in detail. This study shows that a general similar trend can be observed for the structural robustness of in-service continuous girder bridge. The elements with smaller structural robustness of this kind of bridge are basically located around the middle cross section of side spans (first span and last span), followed by the middle span. Moreover, the numerical value of structural robustness of different elements in a continuous girder bridge is significantly different from each other, due to the complexity of the joint effect of different traffic speeds and damage locations. Therefore, the measure point should be generally arranged at the side span firstly, followed by the middle span. With consideration of the specific traffic speed and damage location in engineering application, a detailed analysis is also proposed for the further optimization of SHM sensor measure point arrangement. Once the elements are arranged in order of the numerical value of structural robustness, the SHM sensor measure point arrangement of this kind of bridge can be more targeted, and the number of sensors can also be greatly reduced.


2011 ◽  
Vol 199-200 ◽  
pp. 251-256
Author(s):  
Kai An Yu ◽  
Ke Yu Chen

Based on requirements of pipe transport systems on deepwater pipelaying vessel, a new pipe lifting mechanism was designed. It was composed of crank-rocker and rocker-slider mechanism with good lifting capacity and high efficiency. When the slider went to the upper limit position, the mechanism could approximatively dwell, meeting the requirement for transverse conveyor operation. According to the theory of dynamics, numerical analysis method was used to the dynamic analysis of the mechanism. The results showed the maximum counterforce was at the joint between the rocker and ground, and this calculation could be a guideline for the kinematic pair structure designing.


Author(s):  
Apiwat Reungwetwattana ◽  
Shigeki Toyama

Abstract This paper presents an efficient extension of Rosenthal’s order-n algorithm for multibody systems containing closed loops. Closed topological loops are handled by cut joint technique. Violation of the kinematic constraint equations of cut joints is corrected by Baumgarte’s constraint violation stabilization method. A reliable approach for selecting the parameters used in the constraint stabilization method is proposed. Dynamic analysis of a slider crank mechanism is carried out to demonstrate efficiency of the proposed method.


2011 ◽  
Vol 280 ◽  
pp. 186-190
Author(s):  
Shou Tan Song ◽  
Ji Wen Zhang ◽  
Xin Yuan

The dynamic performance of continuous girder under the train in a series of speed is studied through examples, and the main conclusions are given in the following. The resonance mechanism of continuous girder is similar to simply supported beam. The vehicle wheel load forms regular moving load series, which induces periodical action and resonance of the bridge. The damping ratio of bridge itself has less effect on the amplitude at the loading stage, but significant effects appear when the load departs from the bridge. The count of continuous spans also has less impact on the dynamic coefficients, so three continuous spans can be adopted for calculation and analysis. Span and fundamental frequency have significant influence on dynamic coefficients of bridge structures. To extend the span of the bridge structure can reduce the dynamic coefficient while keeping its frequency invariant. The fundamental frequencies of different bridges are corresponding to certain resonant speeds, which calls for the attention in the design.


2013 ◽  
Vol 23 (2) ◽  
pp. 198-203 ◽  
Author(s):  
Akira Igarashi ◽  
Hiroyuki Ouchi ◽  
Tetsuo Matsuda ◽  
Hiroshige Uno ◽  
Hiroshi Matsuda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document