Analysis of Unbalance Vibration of Rotating Shaft Systems with Many Bearings and Disks (Vibration of Rotating Machine)

1969 ◽  
Vol 72 (610) ◽  
pp. 1556-1563 ◽  
Author(s):  
Katsuaki KIKUCHI
2021 ◽  
Vol 143 (6) ◽  
Author(s):  
Shota Yabui ◽  
Hideyuki Inoue ◽  
Tsuyoshi Inoue

Abstract This study introduces a track-following controller design to measure the rotor dynamics (RD) coefficient of the annular seal using active magnetic bearings. The annular seal is implemented contiguously to prevent leakage of fluid between the rotating shaft and stationary area of a rotating machine. The force caused by the seal at the contact point can cause vibrations, which should be identified for designing rotating machinery. The RD force is coupled with mechanical and fluid dynamics. Moreover, the dynamics depend on the operating conditions of the rotating machine, namely, the rotating speed and orbit of the rotating shaft. This study proposes a control system for the active magnetic bearing to measure the RD force directly at the arbitrary operating condition. The main controller is designed to satisfy a criterion of the frequency characteristics of the rotating system. In addition, the control system employs adaptive feed-forward cancellation (AFC). This can estimate and compensate for the RD force in the control system simultaneously. The experimental results indicate that the control system can achieve an arbitrary operating condition and measure the RD coefficient of the annular seal in real-time. As a result, the RD coefficient is identified based on the equation of motion.


1969 ◽  
Vol 72 (610) ◽  
pp. 1579-1585
Author(s):  
Yoshiaki GOTO ◽  
Toshiaki WATANABE ◽  
Toshiyuki SAKATA

Author(s):  
Muhammad R A A Jamal ◽  
◽  
Khaled S Al Rasheed ◽  

Measuring Vibration parameter for rotating machinery is essential for monitoring and diagnosis system in industrial plants. This paper demonstrates another approach to vibration measurement for rotating machine using electrostatic sensor and signal processing techniques. A single electrostatic sensor is used to detect charges surrounding the moving shaft of the machine. The signal from the electrostatic sensor is processed in MATLAB using Autocorrelation, Fast-Fourier, and Root Mean Square. The implementation of this technical approach was conducted on a modified test rig using three different shafts. The three shafts represent three different vibration modes: normal, abnormal, and severe. Each shaft was experimented under low and high rotation speed to observe amplitude and frequency level. Although the results of the tests did not show a direct measure of vibration displacement, due to the complex nature of the induced charges by the surface pattern. However, the results showed an indicative level of vibration at different amplitudes for the three shafts.


Author(s):  
M. Kasarda ◽  
T. Bash ◽  
D. Quinn ◽  
G. Mani ◽  
D. Inman ◽  
...  

This work demonstrates the capability of an Active Magnetic Bearing (AMB) to be used as an actuator for interrogating a system by applying multiple forces to a rotating shaft in order to monitor and evaluate the associated responses to these inputs. Similar to modal analysis techniques which apply input signals to static structures in order to monitor responses to those inputs, this approach allows for the measurement of both input and output response in a rotating system for evaluation. However, unlike these techniques, the procedure developed here allows for multiple forms of force inputs to be applied to a rotating structure. This procedure facilitates the development of new improved techniques for diagnosing subtle changes in machinery health or for identifying faults that would potentially go undetected by conventional methods before failure. Although it is expected that this approach can be used in rotors supported in AMBs, the technique developed here uses an AMB on the rotor in conjunction with conventional support bearings. Therefore, this approach has the potential to be used on any rotating machine that can be designed or retrofitted with a single AMB actuator. To demonstrate this approach experimentally, a notched shaft was chosen to represent a shaft crack for identification purposes. Three cases were examined, including a healthy (unnotched) shaft, and three cases of a shaft with a mid-span notch extending to a depth of 10%, 25%, and 40% of shaft diameter, respectively. During testing, excitations up to 1000 Hz were applied via one axis of the AMB actuator to the four rotor cases while the rotor was operating at a steady-state speed of 2400 rpm, and corresponding responses were recorded at the proximity probes. No changes in the 1st or 2nd natural frequencies were detected, but distinct shifts in the 3rd natural frequency were detected from the Frequency Response Function (FRF) data. Since the vast majority of rotating machinery are designed to operate below the 3rd natural frequency, the effect of the notch on the 3rd natural frequency would not have been identified without the application of excitation forces through the AMB actuator. This paper represents an introduction to the new health monitoring approach and results presented here demonstrate the viability of the technique for detecting shaft cracks that might otherwise go undetected in typical steady-state vibration monitoring approaches.


Sign in / Sign up

Export Citation Format

Share Document