J055031 Study on the Tip Leakage Flow in a Linear Compressor Cascade at a Low Reynolds Number : Verification of Shroud Effects

2013 ◽  
Vol 2013 (0) ◽  
pp. _J055031-1-_J055031-5
Author(s):  
Hideo TANIGUCHI ◽  
Ken-ichi FUNAZAKI ◽  
Masahiro KATO ◽  
Masafumi KUMAGAI ◽  
Ryutaro ISHIMURA ◽  
...  
1993 ◽  
Author(s):  
S. Kang ◽  
C. Hirsch

Tip leakage flow in a linear compressor cascade of NACA 65-1810 profiles is investigated, for tip clearance levels of 1.0, 2.0 and 3.25 percent of chord at design and off-design flow conditions. Data, velocity and pressures, are collected from three transverse sections inside tip clearance and sixteen sections within flow passage. Tip separation vortex influence is identified from the data. Leakage flow mixing is clearly present inside the clearance and has a significant influence on the internal loss.


1994 ◽  
Vol 116 (4) ◽  
pp. 657-664 ◽  
Author(s):  
S. Kang ◽  
C. Hirsch

Tip leakage flow in a linear compressor cascade of NACA 65-1810 profiles is investigated, for tip clearance levels of 1.0, 2.0, and 3.25 percent of chord at design and off-design flow conditions. Velocity and pressure data are collected from three transverse sections inside tip clearance and sixteen sections within flow passage. Tip separation vortex influence is identified from the data. Leakage flow mixing is clearly present inside the clearance and has a significant influence on the internal loss.


2011 ◽  
Vol 2011.46 (0) ◽  
pp. 12-13
Author(s):  
Ken-ichi FUNAZAKI ◽  
Masafumi KUMAGAI ◽  
Kazunari MATUDA ◽  
Dai KADO ◽  
Guillaume PALLOT

Author(s):  
Ziyi Shao ◽  
Wen Li ◽  
Yangli Zhu ◽  
Xing Wang ◽  
Xuehui Zhang ◽  
...  

The tip clearance flow could lead to work reduction and loss generation in turbomachines. However, the effect of separation at low Reynolds number on leakage flow is seldom studied. The previous method for evaluating tip leakage characteristics should also be further researched. Thus, numerical investigations on the tip clearance flow in an unshrouded axial-inflow turbine are conducted at low Reynolds number (3.5 × 104 of the rotor outlet at the designed condition) in the present study. The flow patterns and leakage mass flow rate of the clearance have been analyzed in detail. It is found that the tip clearance flow is greatly affected by the flow separation caused by low Reynolds number. The scraping ratio adopted in previous references does not accord with the clearance flow characteristics at low Reynolds number, especially in the front part of the clearance. A coefficient by −0.70 power of the Reynolds number is proposed to modify the scraping ratio in the present study. The synergy between the velocity and the pressure gradient is innovatively employed to research the tip clearance flow characteristics, and it gives a reliable criterion of indicating the flow patterns in the tip clearance.


Sign in / Sign up

Export Citation Format

Share Document