G0200101 Evaluation of Wall Shear Stress on Cerebral Artery Using CFD

2015 ◽  
Vol 2015 (0) ◽  
pp. _G0200101--_G0200101-
Author(s):  
Ayumi MITOH ◽  
Eitarou KOYABU ◽  
Eiji SOBU ◽  
Tadashi KASHIMA ◽  
Sinichi IKEDA ◽  
...  
BMC Neurology ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mikołaj Zimny ◽  
Edyta Kawlewska ◽  
Anna Hebda ◽  
Wojciech Wolański ◽  
Piotr Ładziński ◽  
...  

Abstract Background Previously published computational fluid dynamics (CFD) studies regarding intracranial aneurysm (IA) formation present conflicting results. Our study analysed the involvement of the combination of high wall shear stress (WSS) and a positive WSS gradient (WSSG) in IA formation. Methods We designed a case-control study with a selection of 38 patients with an unruptured middle cerebral artery (MCA) aneurysm and 39 non-aneurysmal controls to determine the involvement of WSS, oscillatory shear index (OSI), the WSSG and its absolute value (absWSSG) in aneurysm formation based on patient-specific CFD simulations using velocity profiles obtained from transcranial colour-coded sonography. Results Among the analysed parameters, only the WSSG had significantly higher values compared to the controls (11.05 vs − 14.76 [Pa/mm], P = 0.020). The WSS, absWSSG and OSI values were not significantly different between the analysed groups. Logistic regression analysis identified WSS and WSSG as significant co-predictors for MCA aneurysm formation, but only the WSSG turned out to be a significant independent prognosticator (OR: 1.009; 95% CI: 1.001–1.017; P = 0.025). Significantly more patients (23/38) in the case group had haemodynamic regions of high WSS combined with a positive WSSG near the bifurcation apex, while in the control group, high WSS was usually accompanied by a negative WSSG (14/39). From the analysis of the ROC curve for WSSG, the area under the curve (AUC) was 0.654, with the optimal cut-off value −0.37 Pa/mm. The largest AUC was recognised for combined WSS and WSSG (AUC = 0.671). Our data confirmed that aneurysms tend to form near the bifurcation apices in regions of high WSS values accompanied by positive WSSG. Conclusions The development of IAs is determined by an independent effect of haemodynamic factors. High WSS impacts MCA aneurysm formation, while a positive WSSG mainly promotes this process.


2016 ◽  
Vol 24 (3) ◽  
pp. 349-357 ◽  
Author(s):  
Lijian Xu ◽  
Michiko Sugawara ◽  
Gaku Tanaka ◽  
Makoto Ohta ◽  
Hao Liu ◽  
...  

Stroke ◽  
2013 ◽  
Vol 44 (2) ◽  
pp. 519-521 ◽  
Author(s):  
Yoichi Miura ◽  
Fujimaro Ishida ◽  
Yasuyuki Umeda ◽  
Hiroshi Tanemura ◽  
Hidenori Suzuki ◽  
...  

2013 ◽  
Vol 3 (2) ◽  
pp. 20120094 ◽  
Author(s):  
Miguel O. Bernabeu ◽  
Rupert W. Nash ◽  
Derek Groen ◽  
Hywel B. Carver ◽  
James Hetherington ◽  
...  

Perturbations to the homeostatic distribution of mechanical forces exerted by blood on the endothelial layer have been correlated with vascular pathologies, including intracranial aneurysms and atherosclerosis. Recent computational work suggests that, in order to correctly characterize such forces, the shear-thinning properties of blood must be taken into account. To the best of our knowledge, these findings have never been compared against experimentally observed pathological thresholds. In this work, we apply the three-band diagram (TBD) analysis due to Gizzi et al. (Gizzi et al. 2011 Three-band decomposition analysis of wall shear stress in pulsatile flows. Phys. Rev. E 83 , 031902. ( doi:10.1103/PhysRevE.83.031902 )) to assess the impact of the choice of blood rheology model on a computational model of the right middle cerebral artery. Our results show that, in the model under study, the differences between the wall shear stress predicted by a Newtonian model and the well-known Carreau–Yasuda generalized Newtonian model are only significant if the vascular pathology under study is associated with a pathological threshold in the range 0.94–1.56 Pa, where the results of the TBD analysis of the rheology models considered differs. Otherwise, we observe no significant differences.


2000 ◽  
Author(s):  
Ryuhei Yamaguchi ◽  
Susumu Kudo ◽  
Hiroyuki Yamanobe ◽  
Mikio Nakajima ◽  
Hiroshi Ujiie

Abstract The aneurysm in the cerebral artery is apt to initiate around the “Circle of Willis”. The anterior communicating artery (ACoA), which composes one of major part of the circle of Willis, is the most predilection artery of the aneurysm. This artery is characterized by a singular geometry. At this artery, two proximal anterior cerebral arteries (A1, confluence) join facing each other. Just at this artery, the flow bifurcates two distal anterior cerebral arteries (A2, bifurcation). Namely, this artery has a function as a bypass channel. Therefore, the flow around the anterior communicating artery would be very unstable. The aneurysm arises around the apex of this artery where the confluent flow collides.


2011 ◽  
Vol 9 (69) ◽  
pp. 677-688 ◽  
Author(s):  
L. Goubergrits ◽  
J. Schaller ◽  
U. Kertzscher ◽  
N. van den Bruck ◽  
K. Poethkow ◽  
...  

Haemodynamics and morphology play an important role in the genesis, growth and rupture of cerebral aneurysms. The goal of this study was to generate and analyse statistical wall shear stress (WSS) distributions and shapes in middle cerebral artery (MCA) saccular aneurysms. Unsteady flow was simulated in seven ruptured and 15 unruptured MCA aneurysms. In order to compare these results, all geometries must be brought in a uniform coordinate system. For this, aneurysms with corresponding WSS data were transformed into a uniform spherical shape; then, all geometries were uniformly aligned in three-dimensional space. Subsequently, we compared statistical WSS maps and surfaces of ruptured and unruptured aneurysms. No significant ( p > 0.05) differences exist between ruptured and unruptured aneurysms regarding radius and mean WSS. In unruptured aneurysms, statistical WSS map relates regions with high (greater than 3 Pa) WSS to the neck region. In ruptured aneurysms, additional areas with high WSS contiguous to regions of low (less than 1 Pa) WSS are found in the dome region. In ruptured aneurysms, we found significantly lower WSS. The averaged aneurysm surface of unruptured aneurysms is round shaped, whereas the averaged surface of ruptured cases is multi-lobular. Our results confirm the hypothesis of low WSS and irregular shape as the essential rupture risk parameters.


2019 ◽  
Vol 07 (02) ◽  
pp. 73-86
Author(s):  
Ryuhei Yamaguchi ◽  
Taihei Kotani ◽  
Gaku Tanaka ◽  
Simon Tupin ◽  
Kahar Osman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document