Development of reactor vessel thermal hydraulic evaluation method under natural circulation decay heat removal conditions in sodium-cooled fast reactor

2020 ◽  
Vol 2020 (0) ◽  
pp. S08111
Author(s):  
Erina HAMASE ◽  
Yasutomo IMAI ◽  
Norihiro DODA ◽  
Masaaki TANAKA
Author(s):  
Hae-Yong Jeong ◽  
Kwi-Seok Ha ◽  
Won-Pyo Chang ◽  
Yong-Bum Lee ◽  
Dohee Hahn ◽  
...  

The Korea Atomic Energy Research Institute (KAERI) is developing a Generation IV sodium-cooled fast reactor design equipped with a passive decay heat removal circuit (PDRC), which is a unique safety system in the design. The performance of the PDRC system is quite important for the safety in a simple system transient and also in an accident condition. In those situations, the heat generated in the core is transported to the ambient atmosphere by natural circulation of the PDRC loop. It is essential to investigate the performance of its heat removal capability through experiments for various operational conditions. Before the main experiments, KAERI is performing numerical studies for an evaluation of the performance of the PDRC system. First, the formation of a stable natural circulation is numerically simulated in a sodium test loop. Further, the performance of its heat removal at a steady state condition and at a transient condition is evaluated with the real design configuration in the KALIMER-600. The MARS-LMR code, which is developed for the system analysis of a liquid metal-cooled fast reactor, is applied to the analysis. In the present study, it is validated that the performance of natural circulation loop is enough to achieve the required passive heat removal for the PDRC. The most optimized modeling methodology is also searched for using various modeling approaches.


Author(s):  
Mitsuyo Tsuji ◽  
Kosuke Aizawa ◽  
Jun Kobayashi ◽  
Akikazu Kurihara ◽  
Yasuhiro Miyake

Abstract In Sodium-cooled Fast Reactors (SFRs), it is important to optimize the design and operate decay heat removal systems for safety enhancement against severe accidents which could lead to core melting. It is necessary to remove the decay heat from the molten fuel which relocated in the reactor vessel after the severe accident. Thus, the water experiments using a 1/10 scale experimental apparatus (PHEASANT) simulating the reactor vessel of SFR were conducted to investigate the natural circulation phenomena in a reactor vessel. In this paper, the natural circulation flow field in the reactor vessel was measured by the Particle Image Velocimetry (PIV) method. The PIV measurement was carried out under the operation of the dipped-type direct heat exchanger (DHX) installed in the upper plenum when 20% of the core fuel fell to the lower plenum and accumulated on the core catcher. From the results of PIV measurement, it was quantitatively confirmed that the upward flow occurred at the center region of the lower and the upper plenums. In addition, the downward flows were confirmed near the reactor vessel wall in the upper plenum and through outermost layer of the simulated core in the lower plenum. Moreover, the relationship between the temperature field and the velocity field was investigated in order to understand the natural circulation phenomenon in the reactor vessel. From the above results, it was confirmed that the natural circulation cooling path was established under the dipped-type DHX operation.


2009 ◽  
Vol 2009.14 (0) ◽  
pp. 427-428
Author(s):  
Hideki KAMIDE ◽  
Hiroyuki MIYAKOSHI ◽  
Osamu WATANABE ◽  
Yuzuru EGUCHI ◽  
Tomonari KOGA

2018 ◽  
Vol 68 (1) ◽  
pp. 1-10
Author(s):  
František Dzianik ◽  
Štefan Gužela ◽  
Eva Puškášová

Abstract The paper deals with the process properties in terms of the heat transfer, i.e. the thermal performance of the thermal-process units within a helium loop intended for the testing of the decay heat removal (DHR) from the model of the gas-cooled fast reactor (GFR). The system is characterised by a natural circulation of helium, as a coolant, and assume the steady operating conditions of the circulation. The helium loop consists of four main components: the model of the gas-cooled fast reactor, the model of the heat exchanger for the decay heat removal, hot piping branch and cold piping branch. Using the thermal calculations, the thermal performance of the heat exchanger model and the thermal performance of the gas-cooled fast reactor model are determined. The calculations have been done for several defined operating conditions which correspond to the different helium flow rates within the system.


Sign in / Sign up

Export Citation Format

Share Document