A Numerical Study on NOx Formation Characteristics in Unsteady Counterflow Diffusion Flame

2000 ◽  
Vol 2000.1 (0) ◽  
pp. 707-708
Author(s):  
Akihiro SHIMIZU ◽  
Hiroshi YAMASHITA
2021 ◽  
Vol 898 (1) ◽  
pp. 012006
Author(s):  
Conghao Li ◽  
Jingfu Wang ◽  
Ying Chen ◽  
Xiaolei Zhang

Abstract Ammonia, as a carbon-neutral fuel, draws people attentions recently. NH3/CH4 blends is considered as a kind of fuel. A numerical simulation of the effects of CO2 dilution on the combustion characteristics and NO emission of NH3/CH4 counterflow diffusion flame was conducted in this study. Diffusion flame structure, the influence of CO2 radiation characteristics on temperature and NO emission characteristics were studies at normal temperature and pressure. The dilution and radiation of CO2 reduce the flame temperature significantly. NO concentration decreased with the CO2 mole fraction increase effectively. The study extends the basic combustion characteristics of NH3 containing fuel.


Author(s):  
Santanu Pramanik ◽  
Achintya Mukhopadhyay

This paper reports numerical investigation concerning the interaction of a laminar methane–air counterflow diffusion flame with monodisperse and polydisperse water spray. Commercial code ansys fluent with reduced chemistry has been used for investigation. Effects of strain rate, Sauter mean diameter (SMD), and droplet size distribution on the temperature along stagnation streamline have been studied. Flame extinction using polydisperse water spray has also been explored. Comparison of monodisperse and polydisperse droplet distribution on flame properties reveals suitability of polydisperse spray in flame temperature reduction beyond a particular SMD. This study also provides a numerical framework to study flame–spray interaction and extinction.


2004 ◽  
Vol 28 (14) ◽  
pp. 1255-1267 ◽  
Author(s):  
Dong-Jin Hwang ◽  
Jong-Wook Choi ◽  
Jeong Park ◽  
Sang-In Keel ◽  
Chang-Bo Ch ◽  
...  

2002 ◽  
Vol 41 (7) ◽  
pp. 693-698 ◽  
Author(s):  
Ryugo Fuse ◽  
Hideaki Kobayashi ◽  
Yiguang Ju ◽  
Kaoru Maruta ◽  
Takashi Niioka

Author(s):  
Shan Li ◽  
Shanshan Zhang ◽  
Lingyun Hou ◽  
Zhuyin Ren

Modern gas turbines in power systems employ lean premixed combustion to lower flame temperature and thus achieve low NOx emissions. The fuel/air mixing process and its impacts on emissions are of paramount importance to combustor performance. In this study, the mixing process in a methane-fired model combustor was studied through an integrated experimental and numerical study. The experimental results show that at the dump location, the time-averaged fuel/air unmixedness is less than 10% over a wide range of testing conditions, demonstrating the good mixing performance of the specific premixer on the time-averaged level. A study of the effects of turbulent Schmidt number on the unmixedness prediction shows that for the complex flow field involved, it is challenging for Reynolds-Averaged Navier-Stokes (RANS) simulations with constant turbulent Schmidt number to accurately predict the mixing process throughout the combustor. Further analysis reveals that the production and scalar dissipation are the key physical processes controlling the fuel/air mixing. Finally, the NOx formation in this model combustor was analyzed and modelled through a flamelet-based approach, in which NOx formation is characterized through flame-front NOx and its post-flame formation rate obtained from one-dimensional laminar premixed flames. The effect of fuel/air unmixedness on NOx formation is accounted for through the presumed probability density functions (PDF) of mixture fraction. Results show that the measured NOx in the model combustor are bounded by the model predictions with the fuel/air unmixedness being 3% and 5% of the maximum unmixedness. In the context of RANS, the accuracy in NOx prediction depends on the unmixedness prediction which is sensitive to turbulent Schmidt number.


2003 ◽  
Vol 135 (1-2) ◽  
pp. 87-96 ◽  
Author(s):  
Matthew Juniper ◽  
Nasser Darabiha ◽  
Sébastien Candel

Sign in / Sign up

Export Citation Format

Share Document