733 Evaluation of aerodynamic performance of a four-flapping wing micro aerial vehicle

2008 ◽  
Vol 2008.6 (0) ◽  
pp. 81-82
Author(s):  
Yusuke OSUMI ◽  
Ken-ichi TSUBOTA ◽  
Hao LIU
2019 ◽  
Vol 10 (2) ◽  
pp. 355-362
Author(s):  
Qiang Liu ◽  
Qiang Li ◽  
Xiaoqin Zhou ◽  
Pengzi Xu ◽  
Luquan Ren ◽  
...  

Abstract. This paper describes a novel flapping wing micro air vehicle (FWMAV),which can achieve two active degree of freedom (DOF) movements of flapping and swing, as well as twisting passively. This aircraft has a special “0” figure wingtip motion trajectory with the 140∘ flapping stroke angle. With these characteristics integrated into the simple flapping mechanism, the aerodynamic force is somewhat improved. The model made a balance between the improved aerodynamic performance induced by complicated movements and the increased weight of the extra components in aircraft. In the driven design, Only one micro-motor is employed to drive the wing flapping and swing motion simultaneously forming the prescribed trajectory. The 23 g aircraft could reach the maximum flapping frequency of 11 Hz with the tip-to-tip wingspan of 29 cm.


2021 ◽  
Vol 12 (1) ◽  
pp. 603-613
Author(s):  
Shan Jiang ◽  
Yong Hu ◽  
Qiang Li ◽  
Long Ma ◽  
Yang Wang ◽  
...  

Abstract. A multi-mode flapping wing micro air vehicle (FWMAV) that uses a figure eight wingtip motion trajectory with wing flapping, rotation, and swing motion is presented in this paper. The flapping wing vehicle achieves three active degrees of freedom (DOF) wing movements only with one driving micromotor which has a good balance in the mechanism design (that is inspired by natural fliers) and total weight. Owing to these characteristics being integrated into the simple mechanism design, the aerodynamic force is improved. The aerodynamic performance of the thrust force is improved by 64.3 % compared to one that could only flap up and down with one active DOF under the condition of routine flapping frequency.


2013 ◽  
Vol 427-429 ◽  
pp. 1179-1182
Author(s):  
Sheng Bin Hu ◽  
Jin Yuan Xu ◽  
Xuan Wu ◽  
Chi Zhang ◽  
Yi Hao He

A fast terminal fuzzy sliding mode control scheme for the attitude of flapping wing micro aerial vehicle is proposed in this paper. Based on the feedback linearization technique, a fast terminal sliding mode controller is designed. To diminish the chattering in the control input, a fuzzy controller is designed to adjust the generalized gain of fast terminal fuzzy sliding mode controller according to fast terminal sliding mode surface. The stability of the control algorithm is verified by using Lyapunov theory. Simulation results show that the proposed control scheme is effective.


Sign in / Sign up

Export Citation Format

Share Document