S0505-3-5 An Investigation on Airframe Noise Sources of Landing Gear Model

2009 ◽  
Vol 2009.2 (0) ◽  
pp. 269-270
Author(s):  
Hiroki URA ◽  
Yuzuru YOKOKAWA ◽  
Taro IMAMURA ◽  
Kazuomi YAMAMOTO
2017 ◽  
Vol 16 (4-5) ◽  
pp. 255-273 ◽  
Author(s):  
Takehisa Takaishi ◽  
Hiroki Ura ◽  
Kenichiro Nagai ◽  
Yuzuru Yokokawa ◽  
Mitsuhiro Murayama ◽  
...  

In 2015, the Japan Aerospace Exploration Agency launched the Flight demonstration of QUiet technology to Reduce nOise from High-lift configurations project to verify by flight demonstration the feasibility of practical noise-reducing aircraft modification concepts. In order to serve as a baseline for comparison before modification, airframe noise sources of the JAXA Jet Flying Test Bed “Hisho” were measured with a 30 m diameter array of 195 microphones mounted on a wooden platform built temporary beside the runway of Noto Satoyama Airport in Japan. A classical Delay and Sum in the time domain beamforming algorithm was adapted for the present study, with weight factors introduced to improve the low-frequency resolution and autocorrelations eliminated to suppress wind noise at high frequencies. In the landing configuration at idle thrust, the main landing gear, nose landing gear, and side edges of the six extended flap panels were found to be the dominant “Hisho” airframe noise sources. Deconvolution by the DAMAS and CLEAN-SC algorithms provided clearer positions of these sound sources at low frequencies. Integration of acoustical maps agreed well with the sound pressure level measured by a microphone placed at the center of the microphone array and gave detailed information about the contribution of each noise source.


2000 ◽  
Author(s):  
W. Dobrzynski ◽  
L. Chow ◽  
P. Guion ◽  
D. Shiells

2021 ◽  
pp. 1475472X2110032
Author(s):  
Yongfei Mu ◽  
Jie Li ◽  
Wutao Lei ◽  
Daxiong Liao

The aerodynamic noise of landing gears have been widely studied as an important component of the airframe noise. During take-off and landing, there are doors, cavity and fuselage around the landing gear. The noise caused by these aircraft components will interfere with aerodynamic noise generated by the landing gear itself. Hence, paper proposes an Improved Delayed Detached Eddy Simulation (IDDES) method for the investigation of the flow field around a single fuselage nose landing gear (NLG) model and a fuselage nose landing gear model with doors, cavity and fuselage nose (NLG-DCN) respectively. The difference between the two flow fields were analyzed in detail to better understand the influence of these components around the aircraft’s landing gear, and it was found that there is a serious mixing phenomenon among the separated flow from the front doors, the unstable shear layer falling off the leading edge of the cavity and the wake of the main strut which directly leads to the enhancement of the noise levels. Furthermore, after the noise sound waves are reflected by the doors several times, an interference phenomenon is generated between the doors. This interference may be a reason why the tone excited in the cavity is suppressed.


2021 ◽  
Vol 263 (3) ◽  
pp. 3194-3201
Author(s):  
Varun Bharadwaj Ananthan ◽  
R.A.D. Akkermans ◽  
Dragan Kozulovic

There is an increased emphasis on reducing airframe noise in the last decades. Airframe noise is sound generated by the interaction of a turbulent flow with the aircraft geometry, and significantly contributes to the overall noise production during the landing phase. One examples of airframe noise is the noise generated at a wing's trailing edge, i.e., trailing-edge noise. In this contribution, we numerically explore the local application of riblets for the purpose of trailing-edge noise reduction. Two configurations are studied: i) a clean NACA0012 wing section as a reference, and ii) the same configuration with riblets installed at the wing's aft part. The numerical investigation follows a hybrid computational aeroacoustics approach, where the time-average flow is studied by means of RANS. Noise sources are generated by means of a stochastic approach called Fast Random Particle Mesh method. The results show a deceleration of the flow behind the riblets. Furthermore, the turbulent kinetic energy indicates increased unsteadiness behind the riblets which is shifted away from the wall due to the presence of the riblets. Lastly, the sound sources are investigated by means of the 3D Lamb-vector, which indicates a slight reduction in magnitude near the trailing edge.


2021 ◽  
Vol 182 ◽  
pp. 108263
Author(s):  
Lourenço Tércio Lima Pereira ◽  
Fernando Martini Catalano ◽  
Odenir de Almeida ◽  
Paul Bent

2012 ◽  
Vol 43 (9) ◽  
pp. 29-36 ◽  
Author(s):  
Mofid Gorji-Bandpy ◽  
Mohammadreza Azimi
Keyword(s):  

2013 ◽  
Vol 117 (1189) ◽  
pp. 283-298
Author(s):  
Y. Liu

AbstractBoundary-layer noise produced by rough surfaces is a potential contributor to airframe noise. In this paper, an attempt is made to assess the surface roughness noise for a conceptual Silent Aircraft design SAX-40 using a prediction model described in previous theoretical work (Liu and Dowling(12)). Estimates of three idealised test cases show that surface roughness could produce a relatively high noise level and enhance the trailing-edge noise somewhat. Roughness height and roughness density are two significant parameters which affect surface roughness noise, with roughness height having the more dominant effect. The distribution of roughness noise sources decreases in the streamwise direction on the SAX-40 surface. Two candidate rough surfaces are selected for SAX-40 to keep surface roughness noise at a negligible level and to meet an aggressive noise target.


Author(s):  
Eleonora Neri ◽  
John Kennedy ◽  
Gareth J. Bennett

The reduction of noise generated by aircraft at take-off and approach is crucial in the design of new commercial aircraft. Landing gear noise is significant contribution to the total noise sources during approach. The noise is generated by the interaction between the non-aerodynamic components of the landing gear and the flow, which leads to turbulence generated noise. This research presents results from the European Clean Sky funded ALLEGRA project. The project investigated a full-scale Nose Landing Gear (NLG) model featuring the belly fuselage, bay cavity and hydraulic dressing. A number of low noise treatments were applied to the NLG model including a ramp door spoiler, a wheel axel wind shield, wheel hub caps and perforated fairings. Over 250 far field sensors were deployed in a number of microphone arrays. Since technologies were tested both in isolation and in combination the additive effects of the technologies can be assessed. This study describes the different techniques used to quantify the contribution of each technology to the global noise reduction. The noise reduction technologies will be assessed as a function of frequency range and through beamforming techniques such as source deletion.


Sign in / Sign up

Export Citation Format

Share Document