Stress-Strain Behavior of Magnesium Alloy AZ31 Sheet in Tension and Plane Strain Compression Tests

2003 ◽  
Vol 2003.11 (0) ◽  
pp. 307-308
Author(s):  
Ikuo YARITA ◽  
Yuuki OKAYAMA ◽  
Takashi NAOI
2003 ◽  
Vol 439 ◽  
pp. 227-232
Author(s):  
Jae Wan Song ◽  
Chang Won Kim ◽  
Jeong Whan Han ◽  
Mok Soon Kim ◽  
Sun Keun Hwang

2007 ◽  
Vol 539-543 ◽  
pp. 3448-3453 ◽  
Author(s):  
C. Schmidt ◽  
Rudolf Kawalla ◽  
Tom Walde ◽  
Hermann Riedel ◽  
A. Prakash ◽  
...  

Due to the deformation mechanisms and the typical basal texture rolled magnesium sheets show a significant asymmetry of flow stress in tension and compression. In order to avoid this undesired behavior it is necessary to achieve non-basal texture during rolling, or at least, to reduce the intensity of the basal texture component. The reduction of the anisotropy caused by the basal texture is very important for subsequent forming processes. This project aims at optimizing the hot rolling process with special consideration of texture effects. The development of the model is carried out in close cooperation with the experimental work on magnesium alloy AZ31 .The experimental results are required for the determination of model parameters and for the verification of the model. Deformation-induced texture is described by the visco-plastic self-consistent (VPSC) model of Lebensohn and Tomé. The combination of deformation and recrystallization texture models is applied to hot compression tests on AZ31, and it is found, that the model describes the observed texture and hardening/softening behavior well. In some cases rotation recrystallization occurs in AZ31 which appears to be a possibility to reduce the undesired basal rolling texture.


Sign in / Sign up

Export Citation Format

Share Document