plastic forming
Recently Published Documents


TOTAL DOCUMENTS

428
(FIVE YEARS 58)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Boxin Yang ◽  
Haojie Xu ◽  
Qi An

Abstract Energy method is an essential theoretical approach to analyze plastic forming, which is widely used in rolling. An analysis model for vertical rolling process is established according to energy theory. By using global weighted method firstly, the 3D continuous velocity field, strain rate field and the corresponding power functional are proposed. The unknown variables are solved numerically based on the principle of minimum energy. Then, deformation parameters and rolling force are determined. The analysis on specific examples with the width reduction rate of 0.03~0.05 shows that the theoretical prediction value of weighted model is in good agreement with experimental results. Moreover, the effects of several shape and rolling parameters on rolling force, rolling power and edge deformation are studied. Both the width reduction rate and initial slab thickness have significant influences on dog-bone size and rolling force. A wider slab slightly increases the nonuniformity of dog-bone deformation. An increase of vertical roller radius can weaken the edge deformation.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Zeshen Li ◽  
Fan Guo ◽  
Kai Pang ◽  
Jiahao Lin ◽  
Qiang Gao ◽  
...  

Abstract The processing capability is vital for the wide applications of materials to forge structures as-demand. Graphene-based macroscopic materials have shown excellent mechanical and functional properties. However, different from usual polymers and metals, graphene solids exhibit limited deformability and processibility for precise forming. Here, we present a precise thermoplastic forming of graphene materials by polymer intercalation from graphene oxide (GO) precursor. The intercalated polymer enables the thermoplasticity of GO solids by thermally activated motion of polymer chains. We detect a critical minimum containing of intercalated polymer that can expand the interlayer spacing exceeding 1.4 nm to activate thermoplasticity, which becomes the criteria for thermal plastic forming of GO solids. By thermoplastic forming, the flat GO-composite films are forged to Gaussian curved shapes and imprinted to have surface relief patterns with size precision down to 360 nm. The plastic-formed structures maintain the structural integration with outstanding electrical (3.07 × 105 S m−1) and thermal conductivity (745.65 W m−1 K−1) after removal of polymers. The thermoplastic strategy greatly extends the forming capability of GO materials and other layered materials and promises versatile structural designs for more broad applications. Graphical abstract


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Yao Lin ◽  
Tao Wu ◽  
Guangchun Wang

AbstractA successive tooth forming process for producing large modulus spur gears (m>2.5 mm) is firstly proposed in this paper to break the restrictions of large forming load and large equipment structure of traditional plastic forming. It contains the preforming stage and the finishing stage. In the first stage, the die with a single-tooth preforms gear teeth one by one through several passes. In the second stage, the other die with multi-teeth refines the preformed teeth into required shape. The influence of total pressing depth and feed distribution in preforming stage on final forming quality is analyzed by numerical simulation, and the reasonable process parameters are presented. Successive tooth forming experiments are carried out on the self-designed gear forming device to verify the optimal simulation results. Gears without fold defects are well formed both in simulations and experiments, proving the feasibility of this method. Compared with the whole die forging process, the new technology has advantages of smaller load and simpler tooling, which shows a good potential for manufacturing large modulus and large size spur gears.


2021 ◽  
Vol 11 (22) ◽  
pp. 10892
Author(s):  
Di Liang ◽  
Wenhao Xu ◽  
Jieliang Feng ◽  
Wei Zhao ◽  
Naoki Kawada ◽  
...  

In an effort to improve impact energy-absorption characteristics, this study introduces a cylindrical crash absorber (CAP) with discontinuous protrusions and a continuous local-expansion plastic-forming method for its manufacture. The mechanical properties of the cylindrical energy-absorption structure were modified by installing multiple particle protrusions on the cylinder sidewall to reduce the initial pickup load and improve the impact energy-absorption performance. To facilitate manufacture of the proposed CAP, a cylindrical rubber piece was placed into a cylindrical tube and pressure was applied to the rubber from both ends of the tube. The CAP was formed by the bulging force of the rubber. The formability was verified by developing a successive local bulge-forming experimental device and comparing the manufactured CAP with the results of numerical simulations. Testing of quasi-static collapse conducted on a CAP manufactured using this device verified the effectiveness of the proposed CAP design and its plastic-forming method. It was determined that this design reduced the initial peak load, and the crash absorber could maintain stability over a long, continuous distance during crushing deformation.


2021 ◽  
Vol 2101 (1) ◽  
pp. 012017
Author(s):  
Peiai Li ◽  
Baoyu Wang ◽  
Jiapeng Wang

Abstract The rotary cold extrusion forming process is a plastic forming process with very low material loss, especially in the production of hollow screw rods with equal wall thickness. In this work, the rotary cold extrusion forming process of a hollow T2 copper screw rod with a wall thickness of 4 mm and solid T2 copper screw rod was verified by experimental method. The finite element simulation software Deform-3D was also used to simulate the rotary cold extrusion forming process of the screw rod. The effects of the die with different heights of the working belt and the different wall thickness of the billet on the eccentricity, extrusion force, and forming torque in the forming process of the screw rod were studied. The results show that it is feasible to process hollow and solid T2 copper screw rods with equal wall thickness by rotary cold extrusion. With the increase of die working belt height, the eccentricity of the screw rod becomes smaller and closer to the ideal eccentricity. With the increase of the wall thickness of the billet, the amplitude fluctuation range of the eccentricity of the screw rod gradually decreases. The higher the height of the die working belt, the greater the extrusion force and torque required in the extrusion process, and the more intense the change of torque. These results also provide theoretical guidance for the production practice and lightweight transformation of the screw pump rotor.


Author(s):  
André Schulze ◽  
Oliver Hering ◽  
A. Erman Tekkaya

AbstractBent components and deep drawn cups are produced by direct usage of aluminium chips without melting following a new process chain: hot extrusion of aluminium chips to a cylindrical open profile, flattening, subsequent rolling and bending or deep drawing. The properties of the hot extruded chip-based AA6060 sheets are examined by tensile tests and microstructural investigations and the results are compared with those obtained from material extruded from conventional cast billets. The chip-based sheets were used to form components by bending or deep drawing. No significant differences between the bent components or deep-drawn cups made of chips and those from cast material are observed regarding their capability for further plastic forming operations. This makes the new process route a resource-efficient alternative for the production of aluminium sheet products.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiurong Fang ◽  
Liu Liu ◽  
Jia Lu ◽  
Yang Gao

Nonisothermal forging is an efficient plastic forming method for titanium alloys, but at the same time, it can produce large and uneven residual stress, which seriously affects the service life of components. In order to quantitatively analyze the influence of forging process parameters on the residual stress of Ti-6Al-4V alloy forgings, a numerical model was first established and optimized in combination with experiments. Then, the effects of deformation temperature, deformation degree, and deformation speed on the residual stress of forgings were analyzed by orthogonal test, and the optimal combination of forging process parameters was obtained. Finally, the multiple regression analysis was employed to propose multivariate regression models for the prediction of the average equivalent residual stress. Results show that the prediction model can be used for predicting the residual stress of Ti-6Al-4V alloy forgings with a higher reliability.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4955
Author(s):  
Ya Zhang ◽  
Qingmin Chen ◽  
Mingwei Wang ◽  
Xi Zhang ◽  
Zhongyi Cai

This paper studies the plastic forming of sandwich panels and proposes a universal elastoplastic equivalent method suitable for sandwich panels. To verify the generality of the equivalent method, according to the different core structures, the cores of bi-directional trapezoidal sandwich (BTS) panels and aluminum foam sandwich (AFS) panels are equated to orthotropic and isotropic (special orthotropic) single-layer panels respectively. Through the finite element (FE) numerical simulation of the mesoscopic model of the sandwich panel, the elastoplastic constitutive relationship of the equivalent core model is established, and then the macroscopic equivalent model of the sandwich panel is established. The FE numerical simulation of plastic forming was carried out for the mesoscopic model and equivalent model of BTS panel and AFS panel, and plastic forming experiments were conducted for the sandwich panel through a multi-point forming (MPF) test machine. The results show that the relative errors of the section average stress at the same position of the equivalent model and the mesoscopic model of sandwich panels are all within 4%; compared with the experimental results, the equivalent model of the sandwich panel has high forming accuracy and small shape error, which verifies the high accuracy and generality of the equivalent method. Moreover, using the sandwich panel equivalent model effectively reduces the calculation time of the numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document