compression behaviour
Recently Published Documents


TOTAL DOCUMENTS

326
(FIVE YEARS 94)

H-INDEX

30
(FIVE YEARS 5)

2022 ◽  
pp. 136943322110542
Author(s):  
XiuShu Qu ◽  
Yuxiang Deng ◽  
GuoJun Sun ◽  
Qingwen Liu ◽  
Qi Liu

The use of a self-compacting lower expansion concrete in a concrete-filled steel tube (CFST) structure not only promotes the quality of concrete pouring but also improves the bond behaviour between the steel and the concrete. In combination with the actual stress state of the columns in the engineering structure, it is necessary to study the eccentric compression behaviour of the column. In this study, experimental studies involving both uniaxial and biaxial bending tests of rectangular self-compacting lower expansion CFST columns were carried out. The variation laws of the load–displacement curves, the lateral deflection curves and the stress–strain curves during the loading phase were analysed. Furthermore, the failure modes and the mechanical properties of the specimens under eccentric compression loads were investigated. Subsequently, the numerical models of CFST columns with self-compacting lower expansion concrete were considered and established. In order to verify the rationality of the finite element modelling, the numerical calculation results were compared with test results. Then, a parametric analysis of the compression and the bending bearing capacities of each column was carried out by changing the eccentricity of the load, and the N–M curves or N-Mx-My surfaces describing the ultimate bearing capacity of the column were obtained. Finally, by the parametric finite element analysis of the rectangular CFST columns regarding to the bearing capacity under the same eccentricity, a conclusion was obtained: when the expansion agent content γ of a specimen increased from 0% to 10%, the bearing capacity of the columns increases significantly, but when continue increasing the expansive agent content, the expansion agent content has little effect on the compression–bending bearing capacity.


2021 ◽  
Author(s):  
Sagar Mahalingappa Baligidad ◽  
Chethan Kumar Gangadhara ◽  
Maharudresh Aralikatte Chandrashekhar

Abstract Nanofillers can be added to polymers to improve their mechanical behavior. However, the yield behaviour of most polymer composites is influenced by strain rate. The majority of the research focused on the behaviour of polymer composites at high strain rates. This work aims to investigate how hydroxyapatite (HAP) and reduced Graphene Oxide (rGO) nanofillers affect the mechanical properties of sulphonated polyetheretherketone (sPEEK) at low (tensile and compression behaviour) and high strain rates (compression behaviour). The thermal, mechanical, and energy absorption responses of sPEEK filled with HAP and varying mass fraction (Mf) of rGO (0.5%, 1%, and 1.5%) at different strain are studied in detail. The strong strain rate effect was seen in HAp and rGO loaded sPEEK composites. The strain rate sensitivity factor of sPEEK-HAP/rGO improved as the strain rate increased, but decreased when the Mf of rGO increased. Under low strain rate compression, HAp and rGO loaded sPEEK absorbed more energy at Mf about 4%. SEM micrography was used to study the microstructures of the fractured interfaces of the components, revealing that the HAp and sPEEK materials formed a good compatibility in presence of rGO.


2021 ◽  
Vol 14 (45) ◽  
pp. 3346-3353
Author(s):  
Manjunath Prasad ◽  
◽  
U N Kempaiah ◽  
R Murali Mohan ◽  
Madeva Nagaral

Author(s):  
Zhi Wang ◽  
Shouben Huang ◽  
Feng Wang ◽  
Le Zhou ◽  
Di Tie ◽  
...  

Author(s):  
P Shantharaj ◽  
AS. Prashanth ◽  
Madeva Nagaral ◽  
V. Bharath ◽  
V. Auradi ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3645
Author(s):  
Annie Yu ◽  
Sachiko Sukigara ◽  
Miwa Shirakihara

Spacer fabrics are commonly used as cushioning materials. They can be reinforced by using a knitting method to inlay materials into the connective layer which reinforces the structure of the fabric. The compression properties of three samples that were fabricated by inlaying three different types of silicone-based elastic tubes and one sample without inlaid material have been investigated. The mechanical properties of the elastic tubes were evaluated and their relationship to the compression properties of the inlaid spacer fabrics was analysed. The compression behaviour of the spacer fabrics at an initial compressive strain of 10% is not affected by the presence of the inlaid tubes. The Young’s modulus of the inlaid tubes shows a correlation with fabric compression. Amongst the inlaid fabric samples, the spacer fabric inlaid with highly elastic silicone foam tubes can absorb more compression energy, while that inlaid with silicone tubes of higher tensile strength has higher compressive stiffness.


Sign in / Sign up

Export Citation Format

Share Document