Numerical Study on Generation Mechanism of Tensile Residual Stress in Hasaki of Japanese Sword

2018 ◽  
Vol 2018.26 (0) ◽  
pp. 803
Author(s):  
Ryosuke KUSUNOKI ◽  
Sumihira MANABE ◽  
Muneyoshi IYOTA
2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Ji-Soo Kim ◽  
Hyun-Suk Nam ◽  
Yun-Jae Kim ◽  
Ju-Hee Kim

This paper investigates the effect of initial residual stress and prestrain on residual stresses due to laser shock peening for Alloy 600 using numerical simulation. For simulation, the strain rate dependent Johnson–Cook hardening model with a Mie–Grüneisen equation of state is used. Simulation results are compared with published experimental data, showing good agreement. It is found that the laser shock peening (LSP) process is more effective for higher initial tensile residual stress and for larger initial prestrain in terms of compressive stress at the near surface. However, the effective depth decreases with increasing initial tensile residual stress and initial prestrain.


Author(s):  
Sagar H. Nikam ◽  
N. K. Jain

Prediction of residual stresses induced by any additive layer manufacturing process greatly helps in preventing thermal cracking and distortion formed in the substrate and deposition material. This paper presents the development of a model for the prediction of residual stresses using three-dimensional finite element simulation (3D-FES) and their experimental validation in a single-track and double-track deposition of Ti-6Al-4V powder on AISI 4130 substrate by the microplasma transferred arc (µ-PTA) powder deposition process. It involved 3D-FES of the temperature distribution and thermal cycles that were validated experimentally using three K-type thermocouples mounted along the deposition direction. Temperature distribution, thermal cycles, and residual stresses are predicted in terms of the µ-PTA process parameters and temperature-dependent properties of substrate and deposition materials. Influence of a number of deposition tracks on the residual stresses is also studied. Results reveal that (i) tensile residual stress is higher at the bonding between the deposition and substrate and attains a minimum value at the midpoint of a deposition track; (ii) maximum tensile residual stress occurs in the substrate material at its interface with deposition track. This primarily causes distortion and thermal cracks; (iii) maximum compressive residual stress occurs approximately at mid-height of the substrate material; and (iv) deposition of a subsequent track relieves tensile residual stress induced by the previously deposited track.


2020 ◽  
Vol 34 ◽  
pp. 101245
Author(s):  
Kyeongsik Ha ◽  
Taehwan Kim ◽  
Gyeong Yun Baek ◽  
Jong Bae Jeon ◽  
Do-sik Shim ◽  
...  

2011 ◽  
Vol 219-220 ◽  
pp. 1211-1214
Author(s):  
Wei Jiang

Finite element simulation is an efficient method for studying factors affecting weld-induced residual stress distributions. In this paper, a validated three-dimensional finite element model consisting of sequentially coupled thermal and structural analyses was developed. Three possible symmetrical welding sequences, i.e. one-welder, two-welder and four-welder sequence, which were perceived to generate the least distortion in actual welding circumstances, were proposed and their influences on the residual stress fields in a thick-walled tee joint were investigated. Appropriate conclusions and recommendations regarding welding sequences are presented.


Author(s):  
Kunyang Lin ◽  
Wenhu Wang ◽  
Ruisong Jiang ◽  
Yifeng Xiong

Machining induced residual stresses have an important effect on the surface integrity. Effects of various factors on the distribution of residual stress profiles induced by different machining processes have been investigated by many researchers. However, the initial residual, as one of the important factor that affect the residual stress profile, is always been ignored. In this paper, the residual stress field induced by the quenching process is simulated by the FEM software as the initial condition. Then the initial residual stress field is used to study the residual stress redistribution after the machining process. The influence of initial stress on the stress formation is carried out illustrating with the mechanical and thermal loads during machining processes. The effects of cutting speed on the distribution of residual stress profile are also discussed. These results are helpful to understand how initial residual stresses are redistributed during machining better. Furthermore, the results in the numerical study can be used to explain the machining distortion problem caused by residual stress in the further work.


Sign in / Sign up

Export Citation Format

Share Document