scholarly journals Experimental and numerical study of the subsurface deformation and residual stress during the roller burnishing process

Procedia CIRP ◽  
2020 ◽  
Vol 87 ◽  
pp. 491-496
Author(s):  
Dong Zhang ◽  
Xiao-Ming Zhang ◽  
Han Ding
Author(s):  
John Martin

The possibility of stress corrosion cracking (SCC) in regions of tensile residual stress introduced by weld deposited material has been a concern where environmental effects can reduce component life. Roller burnishing, a form of mechanical cold-working, has been considered as a means of providing for residual stress state improvements. This paper provides a computational evaluation of the roller burnishing process to address the permanent deformation needed to introduce a desirable residual stress state. The analysis uses a series of incrementally applied pressure loadings and finite element methodology to simulate the behavior of a roller burnishing tool. Various magnitudes of applied pressure loadings coupled with different size plates and boundary conditions are examined to assess the degree and depth of the residual compressive stress state after cold working. Both kinematic and isotropic hardening laws are evaluated.


2010 ◽  
Vol 25 (3) ◽  
pp. 176-180
Author(s):  
K. O. Low ◽  
N. S. M. El-Tayeb ◽  
P. V. Brevern

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5844
Author(s):  
Marek Kowalik ◽  
Tomasz Trzepieciński ◽  
Leon Kukiełka ◽  
Piotr Paszta ◽  
Paweł Maciąg ◽  
...  

The article presents the results of investigations into the depth of the plastically deformed surface layer in the roller burnishing process. The investigation was carried out in order to obtain information on the dependence relationship between the depth of plastic deformation, the pressure on the roller and the braking torque. The research was carried out according to the original method developed by the authors, in which the depth of plastic deformation is increased by applying a braking torque to the burnishing roller. In this method, it is possible to significantly increase (up to 20%) the depth of plastic deformation of the surface layer. The tests were carried out on a specially designed device on which the braking torque can be set and the force of the rolling resistance of the roller during burnishing can be measured. The tests were carried out on specimens made of C45 heat-treatable carbon steel. The dependence of the depth of the plastically deformed surface layer was determined for a given pressure force and variable braking moments. The depth of the plastically deformed layer was measured on the deformed end face of the ring-shaped samples. The microhardness in the sample cross-section and the evolution of the microstructure were both analysed.


2019 ◽  
Vol 290 ◽  
pp. 03008
Author(s):  
Marek Kowalik ◽  
Tomasz Trzepiecinski

This paper presents the methods of experimental determining the depth of the plastically deformed top layer in the roller burnishing process. Precise determination of the depth of the plastically deformed layer is difficult due to slight deformation at the boundary of the plastic and elastic zone, the lack of visible changes in the microstructure, and minimal changes in microhardness. The article shows the method of original measurement method that consists in determining the thickness of the deformed layer using rings. The method involves the profilographometric measurements of the disconnected rings (samples) which are flat-faced in the package on the mandrel. The rings material deforms plastically in the surface layer causing wrapping of the end face of the ring in the direction of the rolling tool movement. After dismantling the ring pack, measurements were made on the face of each ring along radial directions, and the thickness of the deformed layer was observed on the microscope. The method was verified by microhardness measurements in the cross-section and cross-section of the ring. The results of deformation depth measurements were verified by finite-element-based numerical simulation.


2020 ◽  
Vol 34 ◽  
pp. 101245
Author(s):  
Kyeongsik Ha ◽  
Taehwan Kim ◽  
Gyeong Yun Baek ◽  
Jong Bae Jeon ◽  
Do-sik Shim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document