F101 Numerical Analysis of Two-Phase Condition in GDL with Pore Network Model

2009 ◽  
Vol 2009.14 (0) ◽  
pp. 161-162
Author(s):  
Gen INOUE ◽  
Yosuke MATSUKUMA ◽  
Masaki MINEMOTO
2014 ◽  
Vol 962-965 ◽  
pp. 1289-1292 ◽  
Author(s):  
Ling Yu Chen ◽  
Yu Liu ◽  
Meiheriayi Mutailipu

Saline aquifer storage is considered to be one of the main ways to realize CO2 geological sequestration. The purpose of the paper is to research CO2 and water seepage characteristics under the condition of different pressure and diameter of glass sand. First, establish four kinds of sand packed beds pore network model. Secondly, measuring the gas-liquid interfacial tension, contact angle under the condition of 50°C and different pressure (5-20MPa). Finally, using the two-phase flow model, obtain the gas-liquid two-phase relative permeability curves under different conditions. The simulation results of this paper can help to predict the actual saline aquifer storage of CO2 sequestration.


2019 ◽  
Vol 130 (2) ◽  
pp. 405-424 ◽  
Author(s):  
Ali Q. Raeini ◽  
Jianhui Yang ◽  
Igor Bondino ◽  
Tom Bultreys ◽  
Martin J. Blunt ◽  
...  

2014 ◽  
pp. 877-882
Author(s):  
Jay Meegoda ◽  
Shengyan Gao ◽  
Liming Hu ◽  
Pengwei Zhang

Author(s):  
J. S. Ellis ◽  
A. Ebrahimi ◽  
A. Bazylak

Sequestration of carbon dioxide in deep underground reservoirs has been discussed for the reduction of atmospheric greenhouse gas emissions in the short- to medium-term until more sustainable technologies are available. Cost and long-term stability are major factors in adoption, so techniques to improve the storage efficiency and trapping security are essential. Such improvements require modeling of the porous geological formations involved in the sequestration process, and comparison to both lab- and field-based experimental studies. To this end, we are developing a comprehensive, large-scale pore-network model to describe multi-phase flow in porous media, including the structural, dissolution, and mineral trapping regimes. To explore the optimal operating parameters for mineralization trapping, we describe a two-phase pore-network model of brine-saturated aquifers and model the invasion of supercritical carbon dioxide (CO2) into the pore structure. Regularly-aligned 2D and 3D pore networks are constructed, and rules-based transport models are used to characterize the saturation behavior over a range of viscosity and capillary parameters, and coordination numbers. Finally, saturation patterns are presented for model caprock and sandstone reservoir conditions, taking into account different contact angles for CO2 on mica and quartz at supercritical conditions. These saturation patterns demonstrate the importance of surface heterogeneities in pore-scale modeling of deep saline aquifers.


Sign in / Sign up

Export Citation Format

Share Document