2P2-D03 Comparison of Muscle Models in Dynamic Condition : Application in Rehabilitation with Functional Electrical Stimulation(Rehabilitation Robotics and Mechatronics)

2011 ◽  
Vol 2011 (0) ◽  
pp. _2P2-D03_1-_2P2-D03_4
Author(s):  
Mourad BENOUSSAAD ◽  
Philippe POIGNET ◽  
David GUIRAUD ◽  
Yoshihiko NAKAMURA
2020 ◽  
Vol 10 (22) ◽  
pp. 8090
Author(s):  
Courtney Rouse ◽  
Brendon Allen ◽  
Warren Dixon

Rehabilitation robotics is an emerging tool for motor recovery from various neurological impairments. However, balancing the human and robot contribution is an open problem. While the motor input can reduce fatigue, which is often a limiting factor of functional electrical stimulation (FES) exercises, too much assistance can slow progress. For a person with a neurological impairment, FES can assist by strategically contracting their muscle(s) to achieve a desired limb movement; however, feasibility can be limited due to factors such as subject comfort, muscle mass, unnatural muscle fiber recruitment, and stimulation saturation. Thus, motor assistance in addition to FES can be useful for prolonging exercise while still ensuring physical effort from the person. In this paper, FES is applied to the biceps brachii to perform biceps curls, and motor assistance is applied intermittently whenever the FES input reaches a pre-set comfort threshold. Exponential stability of the human–robot system is proven with a Lyapunov-like switched systems stability analysis. Experimental results from participants with neurological conditions demonstrate the feasibility and performance of the controller.


Author(s):  
Christian A. Cousin ◽  
Victor H. Duenas ◽  
Courtney A. Rouse ◽  
Warren E. Dixon

Rehabilitation robotics and functional electrical stimulation (FES) are two promising methods of rehabilitation for people with neurological disorders. In motorized FES cycling, both the rider and the motorized cycle must be controlled for cooperative human-machine interaction. While rehabilitation goals vary widely, FES cycling traditionally rejects rider disturbances to accomplish cadence and power tracking; however, this paper ensures that the cycle accommodates the rider without rejecting rider disturbances as a means to promote function and strength recovery while ensuring rider safety. A cadence and admittance controller are developed to activate the cycle’s electric motor and the rider’s leg muscles through FES when kinematically efficient. Using a single set of combined cycle-rider dynamics, a Lyapunov-like switched systems analysis is conducted to conclude global exponential cadence tracking. A subsequent passivity analysis is conducted to show the admittance controller is passive with respect to the rider. For a desired cadence of 50 RPM, preliminary experiments on one able-bodied participant and one participant with spina bifida demonstrate tracking errors of −0.07±2.59 RPM and −0.20±3.86 RPM, respectively.


2017 ◽  
Vol 3 (1) ◽  
pp. 31-34 ◽  
Author(s):  
Paul Meyer-Rachner ◽  
Arne Passon ◽  
Christian Klauer ◽  
Thomas Schauer

Abstract:Motor functions can be hindered in consequence to a stroke or a spinal cord injury. This often results in partial paralyses of the upper limb. The effectiveness of rehabilitation therapy can be improved by the use of rehabilitation robotics and Functional Electrical Stimulation (FES). We consider a hybrid arm weight support combining both. In order to compensate the effect of FES-induced muscle fatigue, we introduce a method to substitute the decreasing level of FES support by cable-driven robotics. We evaluated the approach in a trial with one healthy subject performing repetitive arm lifting. The controller automatically adapted the support and thus no increase in user generated volitional effort was observed when FES induced muscle fatigue occured.


Sign in / Sign up

Export Citation Format

Share Document