3413 Behaviors of Occupant Seated in Child Restraint Systems in Various Full-Scale Vehicle Side Impact Tests

2012 ◽  
Vol 2012.21 (0) ◽  
pp. 169-172
Author(s):  
Daisuke Yamaguchi ◽  
Yoshinori Tanaka ◽  
Naruyuki Hosokawa ◽  
Yasuhiro Matsui ◽  
Koji Mizuno ◽  
...  
Author(s):  
Shaun Eshraghi ◽  
Michael Carolan ◽  
Benjamin Perlman ◽  
Francisco González

Abstract The U.S. Department of Transportation’s Federal Railroad Administration (FRA) has sponsored a series of full-scale dynamic shell impact tests on railroad tank cars. For each shell impact test a pre-test finite element (FE) model is created to predict the overall force-time or force-displacement histories of the impactor, puncture/non-puncture outcomes of the impacted tank shell, global motions of the tank car, internal pressures within the tank, and the energy absorbed by the tank during the impact. While qualitative comparisons (e.g. the shapes of the indentation) and quantitative comparisons (e.g. peak impact forces) have been made between tests and simulations, there are currently no standards or guidelines on how to compare the simulation results with the test results, or what measurable level of agreement would be an acceptable demonstration of model validation. It is desirable that a framework for model validation, including well-defined criteria for comparison, be developed or adopted if FE analysis is to be used without companion full-scale shell impact testing for future tank car development. One of the challenges to developing model validation criteria and procedures for tank car shell puncture is the number of complex behaviors encountered in this problem, and the variety of approaches that could be used in simulating these behaviors. The FE models used to simulate tank car shell impacts include several complex behaviors, which increase the level of uncertainty in simulation results, including dynamic impacts, non-linear steel material behavior, two-phase (water and air) fluid-structure interaction, and contact between rigid and deformable bodies. Approaches to model validation employed in other areas of transportation where validation procedures have been documented are applied to railroad tank car dynamic shell impact FE simulation results. This work compares and contrasts two model validation programs: Roadside Safety Verification and Validation Program (RSVVP) and Correlation and Analysis Plus (CORA). RSVVP and CORA are used to apply validation metrics and ratings specified by the National Cooperative Highway Research Program Project 22-24 (NCHRP 22-24) and ISO/TS 18571:2014 respectively. The validation methods are applied to recently-completed shell impact tests on two different types of railroad tank cars sponsored by the FRA. Additionally, this paper includes discussion on model validation difficulties unique to dynamic impacts involving puncture.


2010 ◽  
Vol 3 (1) ◽  
pp. 744-767 ◽  
Author(s):  
Hideki Yonezawa ◽  
Yoshinori Tanaka ◽  
Naruyuki Hosokawa ◽  
Yasuhiro Matsui ◽  
Koji Mizuno ◽  
...  

2008 ◽  
Vol 3 (1) ◽  
pp. 14 ◽  
Author(s):  
Jia Hu ◽  
Koji Mizuno ◽  
Eiichi Tanaka ◽  
Shunsuke Takagi ◽  
Naruyuki Hosokawa ◽  
...  

2000 ◽  
Author(s):  
Krishnakanth Aekbote ◽  
Srinivasan Sundararajan ◽  
Joseph A. Prater ◽  
Joe E. Abramczyk

Abstract A sled based test method for simulating full-scale EEVC (European) side impact crash test is described in this paper. Both the dummy (Eurosid-1) and vehicle structural responses were simulated, and validated with the full-scale crash tests. The effect of various structural configurations such as foam filled structures, material changes, rocker and b-pillar reinforcements, advanced door design concepts, on vehicle performance can be evaluated using this methodology at the early stages of design. In this approach, an actual EEVC honeycomb barrier and a vehicle body-in-white with doors were used. The under-hood components (engine, transmission, radiator, etc.), tires, and the front/rear suspensions were not included in the vehicle assembly, but they were replaced by lumped masses (by adding weight) in the front and rear of the vehicle, to maintain the overall vehicle weight. The vehicle was mounted on the sled by means of a supporting frame at the front/rear suspension attachments, and was allowed to translate in the impact direction only. At the start of the simulation, an instrumented Eurosid-1 dummy was seated inside the vehicle, while maintaining the same h-point location, chest angle, and door-to-dummy lateral distance, as in a full-scale crash test. The EEVC honeycomb barrier was mounted on another sled, and care was taken to ensure that weight, and the relative impact location to the vehicle, was maintained the same as in full-scale crash test. The Barrier impacted the stationary vehicle at an initial velocity of approx. 30 mph. The MDB and the vehicle were allowed to slide for about 20 inches from contact, before they were brought to rest. Accelerometers were mounted on the door inner sheet metal and b-pillar, rocker, seat cross-members, seats, and non-struck side rocker. The Barrier was instrumented with six load cells to monitor the impact force at different sections, and an accelerometer for deceleration measurement. The dummy, vehicle, and the Barrier responses showed good correlation when compared to full-scale crash tests. The test methodology was also used in assessing the performance/crashworthiness of various sub-system designs of the side structure (A-pillar, B-pillar, door, rocker, seat cross-members, etc.) of a passenger car. This paper concerns itself with the development and validation of the test methodology only, as the study of various side structure designs and evaluations are beyond the scope of this paper.


Author(s):  
Barrie V. Brickle ◽  
Gunars Spons

This paper describes a series of full-scale impact tests to be conducted at the Federal Railroad Administration’s Transportation Technology Center (TTC), Pueblo, Colorado. The tests will be performed to investigate locomotive crashworthiness.


Author(s):  
Zuoping Li ◽  
Jong-Eun Kim ◽  
Jorge E. Alonso ◽  
James S. Davidson ◽  
Alan W. Eberhardt

Clearer understanding of the biomechanics of the pubic symphysis in lateral pelvic impact tests may serve to elucidate the mechanisms of injury in automotive side impacts. While numerous experimental and computational studies have been conducted on the human pelvis, stresses and deformations of the symphysis were never measured, and the role of the boundary conditions supporting the pelvis was not emphasized. The objective of the present study was to develop a biofidelic FE model to investigate the deformations and stresses experienced by the pubic ligaments and interpubic disc under side impact conditions simulating both drop tower experiments and automotive side impacts.


Sign in / Sign up

Export Citation Format

Share Document