A Sub-System Test Methodology for Simulating EEVC Side Impact

2000 ◽  
Author(s):  
Krishnakanth Aekbote ◽  
Srinivasan Sundararajan ◽  
Joseph A. Prater ◽  
Joe E. Abramczyk

Abstract A sled based test method for simulating full-scale EEVC (European) side impact crash test is described in this paper. Both the dummy (Eurosid-1) and vehicle structural responses were simulated, and validated with the full-scale crash tests. The effect of various structural configurations such as foam filled structures, material changes, rocker and b-pillar reinforcements, advanced door design concepts, on vehicle performance can be evaluated using this methodology at the early stages of design. In this approach, an actual EEVC honeycomb barrier and a vehicle body-in-white with doors were used. The under-hood components (engine, transmission, radiator, etc.), tires, and the front/rear suspensions were not included in the vehicle assembly, but they were replaced by lumped masses (by adding weight) in the front and rear of the vehicle, to maintain the overall vehicle weight. The vehicle was mounted on the sled by means of a supporting frame at the front/rear suspension attachments, and was allowed to translate in the impact direction only. At the start of the simulation, an instrumented Eurosid-1 dummy was seated inside the vehicle, while maintaining the same h-point location, chest angle, and door-to-dummy lateral distance, as in a full-scale crash test. The EEVC honeycomb barrier was mounted on another sled, and care was taken to ensure that weight, and the relative impact location to the vehicle, was maintained the same as in full-scale crash test. The Barrier impacted the stationary vehicle at an initial velocity of approx. 30 mph. The MDB and the vehicle were allowed to slide for about 20 inches from contact, before they were brought to rest. Accelerometers were mounted on the door inner sheet metal and b-pillar, rocker, seat cross-members, seats, and non-struck side rocker. The Barrier was instrumented with six load cells to monitor the impact force at different sections, and an accelerometer for deceleration measurement. The dummy, vehicle, and the Barrier responses showed good correlation when compared to full-scale crash tests. The test methodology was also used in assessing the performance/crashworthiness of various sub-system designs of the side structure (A-pillar, B-pillar, door, rocker, seat cross-members, etc.) of a passenger car. This paper concerns itself with the development and validation of the test methodology only, as the study of various side structure designs and evaluations are beyond the scope of this paper.

2008 ◽  
Vol 22 (09n11) ◽  
pp. 1766-1773
Author(s):  
YOUNGHAN YOUN ◽  
JEONG-SEO KOO

The complete evaluation of the side vehicle structure and the occupant protection is only possible by means of the full scale side impact crash test. But, auto part manufacturers such as door trim makers can not conduct the test especially when the vehicle is under the developing process. The main objective of this study is to obtain the design guidelines by a simple component level impact test. The relationship between the target absorption energy and impactor speed were examined using the energy absorbed by the door trim. Since each different vehicle type required different energy levels on the door trim. A simple impact test method was developed to estimate abdominal injury by measuring reaction force of the impactor. The reaction force will be converted to a certain level of the energy by the proposed formula. The target of absorption energy for door trim only and the impact speed of simple impactor are derived theoretically based on the conservation of energy. With calculated speed of dummy and the effective mass of abdomen, the energy allocated in the abdomen area of door trim was calculated. The impactor speed can be calculated based on the equivalent energy of door trim absorbed during the full crash test. With the proposed design procedure for the door trim by a simple impact test method was demonstrated to evaluate the abdominal injury. This paper describes a study that was conducted to determine sensitivity of several design factors for reducing abdominal injury values using the matrix of orthogonal array method. In conclusion, with theoretical considerations and empirical test data, the main objective, standardization of door trim design using the simple impact test method was established.


Author(s):  
Nathan Schulz ◽  
Chiara Silvestri Dobrovolny ◽  
Stefan Hurlebaus ◽  
Harika Reddy Prodduturu ◽  
Dusty R. Arrington ◽  
...  

Abstract The manual for assessing safety hardware (MASH) defines crash tests to assess the impact performance of highway safety features in frontal and oblique impact events. Within MASH, the risk of injury to the occupant is assessed based on a “flail-space” model that estimates the average deceleration that an unrestrained occupant would experience when contacting the vehicle interior in a MASH crash test and uses the parameter as a surrogate for injury risk. MASH occupant risk criteria, however, are considered conservative in their nature, due to the fact that they are based on unrestrained occupant accelerations. Therefore, there is potential for increasing the maximum limits dictated in MASH for occupant risk evaluation. A frontal full-scale vehicle impact was performed with inclusion of an instrumented anthropomorphic test device (ATD). The scope of this study was to investigate the performance of the flail space model (FSM) in a full-scale crash test compared to the instrumented ATD recorded forces which can more accurately predict the occupant response during a collision event. Additionally, a finite element (FE) model was developed and calibrated against the full-scale crash test. The calibrated model can be used to perform parametric simulations with different testing conditions. Results obtained through this research will be considered for better correlation between vehicle accelerations and occupant injury. This becomes extremely important for designing and evaluating barrier systems that must fit within geometrical site constraints, which do not provide adequate length to redirect test vehicles according to MASH conservative evaluation criteria.


Author(s):  
Malcolm H. Ray

A method of comparing two acceleration time histories to determine whether they describe similar physical events is described. The method can be used to assess the repeatability of full-scale crash tests and it can also be used as a criterion for assessing how well a finite-element analysis of a collision event simulates a corresponding full-scale crash test. The method is used to compare a series of six identical crash tests and then is used to compare several finite-element analyses with full-scale crash test results.


Author(s):  
James C. Kennedy

Light poles installed within the deflection zone of roadside barriers (guardrails) may influence the ability of the guardrail to safely redirect an impacting vehicle. One concern is that, during an impact, the vehicle may pivot about the relatively rigid light pole and then spin away from the guardrail back into the traffic stream in an uncontrolled, unsafe manner. A large percentage of the highway network in Ohio uses the type of guardrail and light pole configurations, in which the breakaway light poles are placed at either 15.2- or 45.7-cm (6- or 18-in.) lateral distance from the back of the guardrail, depending on one of two light pole base designs in use. These pole-guardrail systems were placed in large numbers some years ago and Ohio accident data have been inadequate to provide information to determine whether or not a problem exists with this system. Proposed highway rehabilitation and reconstruction projects can include changes or adjustments to placement of guardrails and light poles, but there was a lack of information as to whether or not the past practices possessed a problem. A study was conducted to determine if light poles have an adverse effect on the redirecting performance of guardrails. It included six full-scale crash tests involving two vehicle weight classes (2000P and 820C), two light pole base designs (AT-A and AT-X), and a typical guardrail used in Ohio [Type 5 (W-Beam)]. All full-scale tests were carried out according to the recommended procedures in National Cooperative Highway Research Program (NCHRP) Report 350. The actual vehicles used for the 2000P class were half-ton pickup trucks ballasted to simulate the weight and mass characteristics of the 2000P vehicle that is specified in NCHRP Report 350. The guardrail–light pole system was not shown to cause snagging or subsequent unstable motion of the vehicle due to impact. All vehicles exited the guardrail in a stable manner. No change in the arrangement of light poles behind the Type 5 guardrail is contemplated. The redirecting function of the guardrail was not compromised as a result of placement of the light pole behind the length-of-need. Excessive exit angle situations (according to NCHRP Report 350) occurred in three tests involving the simulated 2000P class vehicles. However, the impact conditions employed for these tests were extreme, and the likelihood of this situation occurring under everyday highway usage may be small.


2020 ◽  
Vol 14 ◽  

The aim of the study was to research the behavior of the rubber-metal body mounting under various modeling options and to select the optimal, from the point of view of ensuring the accuracy of the results in the crash tests simulations. Body supports provide a link between the body and the car frame, and this has a critical effect on the impact test results of the car. The article discusses various options for modeling the body mounting by the degree of simplification from the simplest model with a rigid connection between the body and the frame to the model that takes into account the non-linearity of the stiffness characteristics of the supports, contact interaction between parts of the mounting and its surrounding parts, tension of the supports and failure. The results of virtual tests of a car with various options for modeling mountings were compared with the results of real tests. As a result of the study, a methodology for modeling the body supports was developed, which allows providing the necessary measurement error in virtual crash test modeling.


In vehicle design, safety of occupants is one of the most important criteria. During side collisions, space between vehicle body and occupants is very less as compared to frontal collision. Hence, scope for energy absorption due to deformation of vehicle body in side collisions is less. The strength of side door plays important role in the framework of vehicle side body. The strength of side doors during side collision depends upon the impact beam, vehicle construction, layout of doors etc. Among the mentioned parameters, strength of impact beam is a crucial parameter. The impact beam absorbs notable amount of impact energy by deforming during side collision. Design of side impact beam should be optimum as it is limited by weight of vehicle. Parameters like material, dimensions, shape and mountings of beam inside the door are affecting the strength of side impact beam. In this work parameters of circular cross-section impact beam like diameter of beam, thickness of beam and angle of mounting inside the door are studied. Finite element simulation of side impact beam is done in ABAQUS software and its relative effects on Specific Energy Absorption (SEA) capacity of beam is studied. The simulation results are validated with available literatures. The ANOVA analysis followed by Design of Experiments is used to determine contribution of each parameter on SEA. Further various parameters of circular impact beam are studied by examining the result analysis for crashworthiness of side door.


Author(s):  
Ali O. Atahan ◽  
Guido Bonin ◽  
Moustafa El-Gindy ◽  
James Allen

This paper summarizes results of a large research program intended to develop a draft rear underride guard specification for heavy vehicles. Results of a series of laboratory and full-scale crash tests performed at the Transport Canada Research Center were used in the development of these specifications. A total of eleven full-scale crash tests was carried out to evaluate the effectiveness of different underride guards. The first ten of these tests were performed on a simulated trailer attached guard. Four different underride guard designs were used in these ten full-scale crash tests. Three different vehicle models traveling at 48, 56 and 65 km/h speeds were used to impact underride guards head on. Results of the first ten crash tests show that the currently used US FMVSS 223 standard is far from adequate in preventing the occurrance of rear underride. Based on findings obtained from these crash tests, an improved guard design was developed and tested using a 16-meter trailer. This final crash test verified the effectiveness of improved guard design in reducing the undesirable effects of rear underride crashes. Based on the results, a draft heavy vehicle rear underride guard specification was developed.


Author(s):  
Chandrashekhar K. Thorbole ◽  
Hamid M. Lankarani

The Head Injury Criteria (HIC) compliance is an important aircraft interior furnishing certification. This certification confirms the compliance of the HIC requirement as per 14CFR 23.562 [1] and 14 CFR 25.562 [2]. Full scale crash sled tests are widely used destructive test method to show the required compliance of head injury criteria. This method is costly, time consuming and non repeatable. Factors such as sled pulse shape, belt slack, seating posture of the dummy results change in the dynamic conditions which ultimately affect the HIC value. This poses a significant challenge and high costs to the manufactures to show the compliance of aircraft interior furnishings for the certification process. These factors compel the development of alternative method to certify the cabin furnishings for HIC compliance without consuming aircraft seats, which is more repeatable and non time consuming. The laboratory HIC component tester is the device developed to duplicate the full scale crash HIC result. This device is capable to produce similar dynamic conditions upon impact with the test article resulting duplication of the full scale crash test result. The current model is developed with the rigid neck of polycarbonate unlike the flexible neck of Hybrid II part 572 ATD (Anthropomorphic Test Dummy). This study investigates the scope of improvement in dynamic characteristic of the HCTD (HIC Component Testing Device) with flexible neck. Flexible neck performance is evaluated using validated computational model of the HCTD. The computational model is used to simulate the correlation between the HCTD with rigid neck and HCTD with flexible neck with FSST (Full Scale Sled Test). The result demonstrates that HTCD correlates well with the FSST when flexible neck is used and provides conservative results with rigid neck.


Author(s):  
Chiara Silvestri Dobrovolny ◽  
Harika Reddy Prodduturu ◽  
Dusty R. Arrington ◽  
Nathan Schulz ◽  
Stefan Hurlebaus ◽  
...  

The Manual for Assessing Safety Hardware (MASH) defines crash tests to assess the impact performance of highway safety features in frontal and oblique impact events. Within MASH, the risk of injury to the occupant is assessed based on a “flail-space” model that estimates the average deceleration that an unrestrained occupant would experience when contacting the vehicle interior in a MASH crash test and uses the parameter as a surrogate for injury risk. MASH occupant risk criteria, however, are considered conservative in their nature, due to the fact that they are based on unrestrained occupant accelerations. Therefore, there is potential for increasing the maximum limits dictated in MASH for occupant risk evaluation. A frontal full-scale vehicle impact was performed with inclusion of an instrumented anthropomorphic test device (ATD). The scope of this study was to investigate the performance of the Flail Space Model in a full scale crash test compared to the instrumented ATD recorded forces which can more accurately predict the occupant response during a collision event. Results obtained through this research will be considered for better correlation between vehicle accelerations and occupant injury. This becomes extremely important for designing and evaluating barrier systems that must fit within geometrical site constraints, which do not provide adequate length to redirect test vehicles according to MASH conservative evaluation criteria.


Author(s):  
Chuck A. Plaxico ◽  
Malcolm H. Ray ◽  
Kamarajugadda Hiranmayee

Several types of strong-post W-beam guardrails are used in the United States. Usually the only difference between one type of strong-post W-beam guardrail and another is the choice of post and block-out types. The impact performance of two very similar strong-post W-beam guardrails are compared—the G4(2W), which uses a 150×200 mm wood post and the G4(1W), which uses a 200×200 mm wood post. Although G4(2W) is used in numerous states, G4(1W) is now common only in the state of Iowa. The performance of the two guardrails has been presumed equal, but only one full-scale crash test has been performed on G4(1W) and that was over 30 years ago, using a now-obsolete test vehicle. The nonlinear finite element analysis program LS-DYNA was used to evaluate the crashworthiness of the two guardrails. The G4(2W) guardrail model was validated with the results of a full-scale crash test. A model of the G4(1W) guardrail system was developed, and the deflection, vehicle redirection, and occupant risk factors of the two guardrails were compared. The impact performance of the two guardrails was quantitatively compared using standard techniques. The analysis results indicate similar collision performance for G4(1W) and G4(2W) and show that both satisfy NCHRP Report 350 Test 3-11 safety performance requirements.


Sign in / Sign up

Export Citation Format

Share Document