scholarly journals The X Ray Stress Measurement of Super-Duraimin under Tensile and Compressive Stress.

1944 ◽  
Vol 10 (38-1) ◽  
pp. 17-22
Author(s):  
Toshio NISHIHARA ◽  
Kohei KOZIMA ◽  
Shuzi TAIRA ◽  
Yutaro KOSAKA ◽  
Takeo TOMIYASU
1942 ◽  
Vol 45 (309) ◽  
pp. 789
Author(s):  
Toshio NISHIHARA ◽  
Kohei KOJIMA ◽  
Tadashi MAEYAMA ◽  
Souiti MATSUMIYA

1944 ◽  
Vol 47 (323) ◽  
pp. 74-75
Author(s):  
Toshio NISHIHARA ◽  
Kohei KOJIMA ◽  
Shuji TAIRA ◽  
Yutaro KOSAKA ◽  
Takeo TOMIYASU

Author(s):  
Fabian Jaeger ◽  
Alessandro Franceschi ◽  
Holger Hoche ◽  
Peter Groche ◽  
Matthias Oechsner

AbstractCold extruded components are characterized by residual stresses, which originate from the experienced manufacturing process. For industrial applications, reproducibility and homogeneity of the final components are key aspects for an optimized quality control. Although striving to obtain identical deformation and surface conditions, fluctuation in the manufacturing parameters and contact shear conditions during the forming process may lead to variations of the spatial residual stress distribution in the final product. This could lead to a dependency of the residual stress measurement results on the relative axial and circumferential position on the sample. An attempt to examine this problem is made by the employment of design of experiments (DoE) methods. A statistical analysis of the residual stress results generated through X-Ray diffraction is performed. Additionally, the ability of cold extrusion processes to generate uniform stress states is analyzed on specimens of austenitic stainless steel 1.4404 and possible correlations with the pre-deformed condition are statistically examined. Moreover, the influence of the coating, consisting of oxalate and a MoS2 based lubricant, on the X-Ray diffraction measurements of the surface is investigated.


2018 ◽  
Vol 921 ◽  
pp. 168-176
Author(s):  
Chang Hai Zhou ◽  
Rui Yun Pan ◽  
Hai Tao Ma

The oxidation behavior of Fe-20Ni alloy under compressive stress in air was studied at 800, 900 °C. The results examined by using scanning electron microscope (SEM) and X-ray diffraction (XRD) indicates that the oxide scales were consisted of an external scale and a subscale which has an intragranular scale (above 5 h at 800 °C and 900 °C) and an intergranular scale. Compared with the unstressed specimen, the growth kinetics of external scale was accelerated by an applied compressive stress. Besides, the compressive stress induced an increase in the growths of intragranular scale and intergranular scale formed on the specimens oxidized at 900 °C. However, the effect of compressive stress on the growth of intergranular scale and intragranular scale was not obvious in the case of 800°C. In addition, cracks developed in the subscale for the specimens oxidized under 2.5 MPa compressive stress when the oxidation time exceeded 20 h.


2006 ◽  
Vol 59 (2) ◽  
pp. 225-232 ◽  
Author(s):  
Pierre Yves Jouan ◽  
Arnaud Tricoteaux ◽  
Nicolas Horny

The aim of this paper is first a better understanding of DC reactive magnetron sputtering and its implications, such as the hysteresis effect and the process instability. In a second part, this article is devoted to an example of specific application: Aluminium Nitride. AlN thin films have been deposited by reactive triode sputtering. We have studied the effect of the nitrogen contents in the discharge and the RF bias voltage on the growth of AlN films on Si(100) deposited by triode sputtering. Stoichiometry and crystal orientation of AlN films have been characterized by means of Fourier-transform infrared spectroscopy, X-ray diffraction and secondary electron microscopy. Dense and transparent AlN layers were obtained at high deposition rates. These films have a (002) orientation whatever the nitrogen content in the discharge, but the best crystallised ones are obtained at low value (10%). A linear relationship was observed between the AlN lattice parameter "c" (perpendicular to the substrate surface) and the in-plane compressive stress. Applying an RF bias to the substrate leads to a (100) texture, and films become amorphous. Moreover, the film's compressive stress increases up to a value of 8GPa before decreasing slowly as the bias voltage increases.


Sign in / Sign up

Export Citation Format

Share Document