Experimental Study of Supersonic Axial-Flow Compressor Blading

1963 ◽  
Vol 29 (201) ◽  
pp. 895-902
Author(s):  
Shigeki YAMAGUCHI
1992 ◽  
Author(s):  
Libor Půst

This paper deals with an experimental study of the unsteady flow in a multistage axial-flow compressor with a high design flow coefficient (p = 1.2) at rpm lower than the design ones. A detailed description of the rotating stall during the so-called “modified surge” is given. In this surge type the rotating stall exists during all the surge cycle, in contradistinction of classic surge, when the rotating stall exists only in a part of the surge cycle.


Author(s):  
Qiushi Li ◽  
Tianyu Pan ◽  
Zhiping Li ◽  
Tailu Sun ◽  
Yifang Gong

An experimental investigation is conducted to study the details of instability inception in a transonic axial flow compressor. The experimental results indicate that the compressor instability is initiated through the development of a low-frequency axisymmetric disturbance. The frequency of this disturbance is approximately the Helmholtz frequency of the test facility. The low-frequency disturbance can be detected over 3000 rotor revolutions before the compressor becomes unstable. Further experimental investigations illustrate that this low-frequency axisymmetric disturbance is initiated at the hub region of the compressor. This new kind of instability inception is termed “partial surge.” Examination of the design parameters of the compressor indicates that a high diffusion factor in the rotor root region might be the cause of the partial surge type instability inception.


Author(s):  
M. H. Noorsalehi ◽  
M. Nili-Ahamadabadi ◽  
E. Shirani ◽  
M. Safari

In this study, a new inverse design method called Elastic Surface Algorithm (ESA) is developed and enhanced for axial-flow compressor blade design in subsonic and transonic flow regimes with separation. ESA is a physically based iterative inverse design method that uses a 2D flow analysis code to estimate the pressure distribution on the solid structure, i.e. airfoil, and a 2D solid beam finite element code to calculate the deflections due to the difference between the calculated and target pressure distributions. In order to enhance the ESA, the wall shear stress distribution, besides pressure distribution, is applied to deflect the shape of the airfoil. The enhanced method is validated through the inverse design of the rotor blade of the first stage of an axial-flow compressor in transonic viscous flow regime. In addition, some design examples are presented to prove the effectiveness and robustness of the method. The results of this study show that the enhanced Elastic Surface Algorithm is an effective inverse design method in flow regimes with separation and normal shock.


Sign in / Sign up

Export Citation Format

Share Document