Modified Surge in an Axial Flow Compressor

1992 ◽  
Author(s):  
Libor Půst

This paper deals with an experimental study of the unsteady flow in a multistage axial-flow compressor with a high design flow coefficient (p = 1.2) at rpm lower than the design ones. A detailed description of the rotating stall during the so-called “modified surge” is given. In this surge type the rotating stall exists during all the surge cycle, in contradistinction of classic surge, when the rotating stall exists only in a part of the surge cycle.

2011 ◽  
Vol 20 (1) ◽  
pp. 6-12 ◽  
Author(s):  
Takayuki Hara ◽  
Daisuke Morita ◽  
Yutaka Ohta ◽  
Eisuke Outa

1995 ◽  
Vol 117 (3) ◽  
pp. 307-319 ◽  
Author(s):  
D. L. Gysling ◽  
E. M. Greitzer

Dynamic control of rotating stall in an axial flow compressor has been implemented using aeromechanical feedback. The control strategy developed used an array of wall jets, upstream of a single-stage compressor, which were regulated by locally reacting reed valves. These reed valves responded to the small-amplitude flow-field pressure perturbations that precede rotating stall. The valve design was such that the combined system, compressor plus reed valve controller, was stable under operating conditions that had been unstable without feedback. A 10 percent decrease in the stalling flow coefficient was obtained using the control strategy, and the extension of stable flow range was achieved with no measurable change in the steady-state performance of the compression system. The experiments demonstrate the first use of aeromechanical feedback to extend the stable operating range of an axial flow compressor, and the first use of local feedback and dynamic compensation techniques to suppress rotating stall. The design of the experiment was based on a two-dimensional stall inception model, which incorporated the effect of the aeromechanical feedback. The physical mechanism for rotating stall in axial flow compressors was examined with focus on the role of dynamic feedback in stabilizing compression system instability. As predicted and experimentally demonstrated, the effectiveness of the aeromechanical control strategy depends on a set of nondimensional control parameters that determine the interaction of the control strategy and the rotating stall dynamics.


Author(s):  
D. L. Gysling ◽  
E. M. Greitzer

Dynamic control of rotating stall in an axial flow compressor has been implemented using aeromechanical feedback. The control strategy developed used an array of wall jets, upstream of a single-stage compressor, which were regulated by locally reacting reed valves. These reed valves responded to flowfield pressure perturbations associated with the small amplitude perturbations that precede rotating stall. The valve design was such that the combined system, compressor plus reed valve controller, was stable under operating conditions that had been unstable without feedback. A 10% decrease in the stalling flow coefficient was achieved using the control strategy, and the stable flow range was extended with no noticeable change in the steady state performance of the compression system. The experimental demonstration is the first use of aeromechanical feedback to extend the stable operating range of an axial flow compressor. It is also the first use of local feedback and dynamic compensation techniques to suppress rotating stall. The design of the experiment was based on a two-dimensional stall inception model which incorporated the effect of the aeromechanical feedback. The physical mechanism for rotating stall in axial flow compressors was examined with focus on the role of dynamic feedback in stabilizing compression system instability. The effectiveness of the aeromechanical control strategy was predicted, and experimentally demonstrated, to depend on a set of non-dimensional control parameters that determine the interaction of the control strategy and the rotating stall dynamics.


2000 ◽  
Author(s):  
Craig A. Buhr ◽  
Matthew A. Franchek ◽  
Sanford Fleeter

Abstract Presented in this paper is an analytical study evaluating the closed loop stability of rotating stall control in an axial flow compressor subject to a nonlinear spatial actuation constraint that limits the amplitude of a spatial mode input. Absolute stability of the rotating stall control system is investigated by applying the circle criterion to a linearized model of an axial compressor in series with the saturation element. This stability analysis is then used to design the gain and phase of the ‘classical’ complex gain feedback control law. Resulting is a systematic method for designing the parameters of the complex gain control law which increases the region of absolute stability guaranteed by the circle criterion for the closed-loop system.


1978 ◽  
Vol 20 (2) ◽  
pp. 101-114 ◽  
Author(s):  
I. J. Day ◽  
N.A. Cumpsty

Detailed flow measurements obtained by a new measuring technique are presented for the flow in a stalled axial-flow compressor. Results were obtained from a wide range of compressor builds, including multi-stage and single-stage configurations of various design flow rates and degrees of reaction. Instantaneous recordings of absolute velocity, flow direction and total and static pressures have been included for both full-span and part-span stall. With the aid of these results, it has been shown that the conventional model of the flow in a stall cell is erroneous. An alternative model is proposed, based on the observation that the fluid must cross from one side of the cell to the other in order to preserve continuity in the tangential direction. An investigation of the experimental results also reveals the finer details of the flow in the cell and shows how these details are related to the design flow rate of the compressor. The influence of these cell details on the power absorbed by a stalled compressor are investigated, and consideration is given to the complex pressure patterns encountered in the compressor.


2009 ◽  
Vol 2009 (0) ◽  
pp. 377-378 ◽  
Author(s):  
Hiroaki KIKUTA ◽  
Masato FURUKAWA ◽  
Satoshi GUNJISHIMA ◽  
Kenichiro IWAKIRI ◽  
Takuro KAMEDA

2006 ◽  
Vol 2006.2 (0) ◽  
pp. 149-150
Author(s):  
Sho BONKOHARA ◽  
Ken-ichiro IWAKIRI ◽  
Ryusuke OHTAGURO ◽  
Yasuhiro SHIBAMOTO ◽  
Masato FURUKAWA

Sign in / Sign up

Export Citation Format

Share Document