scholarly journals On the Tool Wear in the Intermittent Cutting of the Reinforced Plastics : 1st Report, Wear Behavior in Dry Cutting

1968 ◽  
Vol 34 (266) ◽  
pp. 1813-1820 ◽  
Author(s):  
Masasuke TUEDA ◽  
Yosio HASEGAWA ◽  
Sinsaku HANASAKI
1969 ◽  
Vol 12 (51) ◽  
pp. 616-621
Author(s):  
Yoshio HASEGAWA ◽  
Shinsaku HANASAKI ◽  
Hidehiko KITA ◽  
Yoshiaki KITAMURA

Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 266
Author(s):  
M.S.I. Chowdhury ◽  
B. Bose ◽  
S. Rawal ◽  
G.S. Fox-Rabinovich ◽  
S.C. Veldhuis

Tool wear phenomena during the machining of titanium alloys are very complex. Severe adhesive interaction at the tool chip interface, especially at low cutting speeds, leads to intensive Built Up Edge (BUE) formation. Additionally, a high cutting temperature causes rapid wear in the carbide inserts due to the low thermal conductivity of titanium alloys. The current research studies the effect of AlTiN and CrN PVD coatings deposited on cutting tools during the rough turning of a Ti6Al4V alloy with severe BUE formation. Tool wear characteristics were evaluated in detail using a Scanning Electron Microscope (SEM) and volumetric wear measurements. Chip morphology analysis was conducted to assess the in situ tribological performance of the coatings. A high temperature–heavy load tribometer that mimics machining conditions was used to analyze the frictional behavior of the coatings. The micromechanical properties of the coatings were also investigated to gain a better understanding of the coating performance. It was demonstrated that the CrN coating possess unique micromechanical properties and tribological adaptive characteristics that minimize BUE formation and significantly improve tool performance during the machining of the Ti6Al4V alloy.


1977 ◽  
Vol 99 (4) ◽  
pp. 401-407 ◽  
Author(s):  
T. Tsukizoe ◽  
N. Ohmae

Wear between unidirectionally oriented fiber-reinforced-plastics and mild steel has been investigated. The wear behavior was found to be greatly influenced by the sliding direction, the mechanical properties of fiber-reinforced-plastics and by the tribological properties of fiber-reinforcements or matrices. A summarization of wear-resistance of seven different kinds of fiber-reinforced-plastics signified that the epoxy resin reinforced with high-modulus carbon fibers was the best wear-resistant fiber-reinforced-plastics.


2010 ◽  
Vol 443 ◽  
pp. 382-387 ◽  
Author(s):  
Somkiat Tangjitsitcharoen ◽  
Suthas Ratanakuakangwan

This paper presents the additional work of the previous research in order to verify the previously obtained cutting condition by using the different cutting tool geometries. The effects of the cutting conditions with the dry cutting are monitored to obtain the proper cutting condition for the plain carbon steel with the coated carbide tool based on the consideration of the surface roughness and the tool life. The dynamometer is employed and installed on the turret of CNC turning machine to measure the in-process cutting forces. The in-process cutting forces are used to analyze the cutting temperature, the tool wear and the surface roughness. The experimentally obtained results show that the surface roughness and the tool wear can be well explained by the in-process cutting forces. Referring to the criteria, the experimentally obtained proper cutting condition is the same with the previous research except the rake angle and the tool nose radius.


Sign in / Sign up

Export Citation Format

Share Document