scholarly journals Investigation of the Wear Behavior of PVD Coated Carbide Tools during Ti6Al4V Machining with Intensive Built Up Edge Formation

Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 266
Author(s):  
M.S.I. Chowdhury ◽  
B. Bose ◽  
S. Rawal ◽  
G.S. Fox-Rabinovich ◽  
S.C. Veldhuis

Tool wear phenomena during the machining of titanium alloys are very complex. Severe adhesive interaction at the tool chip interface, especially at low cutting speeds, leads to intensive Built Up Edge (BUE) formation. Additionally, a high cutting temperature causes rapid wear in the carbide inserts due to the low thermal conductivity of titanium alloys. The current research studies the effect of AlTiN and CrN PVD coatings deposited on cutting tools during the rough turning of a Ti6Al4V alloy with severe BUE formation. Tool wear characteristics were evaluated in detail using a Scanning Electron Microscope (SEM) and volumetric wear measurements. Chip morphology analysis was conducted to assess the in situ tribological performance of the coatings. A high temperature–heavy load tribometer that mimics machining conditions was used to analyze the frictional behavior of the coatings. The micromechanical properties of the coatings were also investigated to gain a better understanding of the coating performance. It was demonstrated that the CrN coating possess unique micromechanical properties and tribological adaptive characteristics that minimize BUE formation and significantly improve tool performance during the machining of the Ti6Al4V alloy.

2010 ◽  
Vol 443 ◽  
pp. 382-387 ◽  
Author(s):  
Somkiat Tangjitsitcharoen ◽  
Suthas Ratanakuakangwan

This paper presents the additional work of the previous research in order to verify the previously obtained cutting condition by using the different cutting tool geometries. The effects of the cutting conditions with the dry cutting are monitored to obtain the proper cutting condition for the plain carbon steel with the coated carbide tool based on the consideration of the surface roughness and the tool life. The dynamometer is employed and installed on the turret of CNC turning machine to measure the in-process cutting forces. The in-process cutting forces are used to analyze the cutting temperature, the tool wear and the surface roughness. The experimentally obtained results show that the surface roughness and the tool wear can be well explained by the in-process cutting forces. Referring to the criteria, the experimentally obtained proper cutting condition is the same with the previous research except the rake angle and the tool nose radius.


2018 ◽  
Author(s):  
Kai Guo ◽  
Bin Yang ◽  
Jie Sun ◽  
Vinothkumar Sivalingam

Titanium alloys are widely utilized in aerospace thanks to their excellent combination of high-specific strength, fracture, corrosion resistance characteristics, etc. However, titanium alloys are difficult-to-machine materials. Tool wear is thus of great importance to understand and quantitatively predict tool life. In this study, the wear of coated carbide tool in milling Ti-6Al-4V alloy was assessed by characterization of the worn tool cutting edge. Furthermore, a tool wear model for end milling cutter is established with considering the joint effect of cutting speed and feed rate for characterizing tool wear process and predicting tool wear. Based on the proposed tool wear model equivalent tool life is put forward to evaluate cutting tool life under different cutting conditions. The modelling process of tool wear is given and discussed according to the specific conditions. Experimental work and validation are performed for coated carbide tool milling Ti-6Al-4V alloy.


2019 ◽  
Vol 16 (2) ◽  
pp. 287-295 ◽  
Author(s):  
Pragat Singh ◽  
J.S. Dureja ◽  
Harwinder Singh ◽  
Manpreet S. Bhatti

PurposeThis study aims to use nanofluid-based minimum quantity lubrication (NMQL) technique to minimize the use of cutting fluids in machining of Inconel-625 and Stainless Steel 304 (SS-304) (Ni-Cr alloys).Design/methodology/approachMachining of Ni-Cr-based alloys is very challenging as these exhibit lower thermal conductivity and rapid work hardening. So, these cannot be machined dry, and a suitable cutting fluid has to be used. To improve the thermal conductivity of cutting fluid, multi-walled carbon nanotubes (MWCNTs) were added to the soybean oil and used with MQL. This study attempts to compare tool wear of coated carbide inserts during face milling of Inconel-625 and SS-304 under dry, flooded and NMQL conditions. The machining performance of both materials, i.e. Inconel-625 and SS-304, has been compared on the basis of tool wear behavior evaluated using scanning electron microscopy-energy dispersive spectroscopy.FindingsThe results indicate higher tool wear and lower tool life during machining of Inconel-625 as compared to SS-304. Machining of Inconel-625 exhibited non-consistent tool wear behavior. The tool failure modes experienced during dry machining are discrete fracture, cracks, etc., which are completely eliminated with the use of NMQL machining. In addition, less adhesion wear and abrasion marks are noticed as compared to dry and flooded machining, thereby enhancing the tool life.Research limitations/implicationsInconel-625 and SS-304 have specific applications in aircraft and aerospace industry, where sculptured surfaces of the turbine blades are machined. The results of current investigation will provide a rich data base for effective machining of both materials under variety of machining conditions.Originality/valueThe literature review indicated that majority of research work on MQL machining has been carried out to explore machining of Ni-Cr alloys such as Inconel 718, Inconel 800, AISI4340, AISI316, AISI1040, AISI430, titanium alloys, hardened steel alloys and Al alloys. Few researchers have explored the suitability of nanofluids and vegetable oil-based cutting fluids in metal cutting operation. However, no literature is available on face milling using nanoparticle-based MQL during machining Inconel-625 and SS-304. Therefore, experimental investigation was conducted to examine the machining performance of NMQL during face milling of Inconel-625 and SS-304 by using soybean oil (vegetable oil) with MWCNTs to achieve ecofriendly machining.


Author(s):  
Aruna Prabha Kolluri ◽  
Srinivasa Prasad Balla ◽  
Satya Prasad Paruchuru

Abstract The 3D Finite element method (FEM) is an efficient tool to predict the variables in the cutting process, which is otherwise challenging to obtain with the experimental methods alone. The present study combines both experimental findings and finite element simulation outcomes to investigate the effect of tool material on output process variables, such as vibrations, cutting temperature distribution and tool wear mechanism. Machining of popular aerospace materials like Ti-6Al-4V and Al7075 turned with coated and uncoated tools are part of the investigation. The authors choose the orthogonal test, measured vibrations and cutting temperatures and used FE simulations to carry out the subsequent validations. This study includes the influence of the predicted heat flux and temperature distribution on the tool wear mechanism. The main aim of this study is to investigate the performance quality of uncoated and coated carbide tools along with its thermal aspects. Comparison of experiment and simulation outcomes shows good agreement with a maximum error of 9.02%. It has been noted that the increase of cutting temperature is proportional to its cutting speed. As the cutting speed increases, it is observed that vibration parameter and flank wear value also increases. Overall, coated carbide turning insert tool is the best method for metal turning with higher rotational speeds of the spindle.


2012 ◽  
Vol 499 ◽  
pp. 348-352 ◽  
Author(s):  
Xiao Li Zhu ◽  
Song Zhang ◽  
X.L. Xu ◽  
H.G. Lv

In the present study, an experimental investigation has been carried out in an attempt to monitor tool wear progress in turning Inconel 718 with coated carbide inserts under the wet cutting condition. First, each experimental test was conducted with a new cutting edge and the turning process was stopped at a certain interval of time. Secondly, the indexable insert was removed from the tool holder and the flank wear of the insert was measured using a three-dimensional digital microscopy (VHX-600E); and then the insert was clamped into the tool holder for the next turning experiment. The final failure of tool wear surfaces were examined under a scanning electron microscope (SEM) equipped with an energy dispersive X-ray spectrometer (EDS). It is indicated that significant flank wear was the predominant failure mode, and the abrasive, adhesive and oxidation wear were the most dominant wear mechanisms which directly control the deterioration and final failure of the cutting tools.


2012 ◽  
Vol 229-231 ◽  
pp. 517-520 ◽  
Author(s):  
Zhi Min Zhou ◽  
Xiao Yan Li ◽  
Yuan Xin Qu ◽  
Jian Na

Titanium alloys, as difficult-to-cut materials, have poor machinability due to their superior mechanical properties, heat resistance and corrosion resistance. High cutting temperature and great cutting force that will greatly accelerate tool wear often occurs in titanium alloys cutting process. In this paper, an ultrasonic vibration turning method was used to lower diamond tool wear during TC4 titanium alloy turning process. Ultrasonic vibration turning tests were carried out with various cutting parameters. Experimental results indicated that there’s a significant reduction of the wear rate of diamond tools by means of ultrasonic vibration in TC4 turning process. For ultrasonic vibration turning, spindle speed, the amplitude and frequency of vibration of the tool are the greatest impact of tool wear, followed by feed rate, then the cutting depth.


2021 ◽  
Author(s):  
Yun Zhou ◽  
Yonghong Fu ◽  
Jie Yang

Abstract In this work, the main aim is to reduce the adhesion and wear that happened during machining of the Ti6Al4V alloy by employing volcano-like texture on the rake face of coated tool. A combination of experimental and simulative investigation was adopted. DEFORM-3D software with updated Lagrangian formulation was used for numerical simulation, and the thermo-mechanical analysis was performed using Johnson-Cook material model to predict the cutting temperature, cutting forces, chip morphology and tool wear. In cutting experiments, volcano-like textures with different area densities (10%, 20%, 30%) were fabricated by fiber laser on the rake face of cemented carbide tools close to the main cutting edge. Then, these textured tools were deposited with CrAlN coating through cathodic vacuum arc ion plating technique. Experiments in cutting Ti6Al4V alloy were carried out with the textured coated tools and non-textured coated tool under dry and wet cutting conditions. Then, the chip morphology, chip size and tool wear were investigated. The results showed that textured coated tools were superior to conventional tool. Especially in wet cutting, compared with those of non-textured coated tool, the adhesion area and the chip curling radius of the coated tool with texture area density of 20% (VCT2) were reduced by 31.2% and 49.7%, respectively. Therefore, VCT2 tool showed a better cutting performance. Finally, the mechanisms of textured coated tools under dry and wet cutting conditions were proposed.


Sign in / Sign up

Export Citation Format

Share Document