Monitoring of Cutting Conditions with Dry Cutting on CNC Turning Machine

2010 ◽  
Vol 443 ◽  
pp. 382-387 ◽  
Author(s):  
Somkiat Tangjitsitcharoen ◽  
Suthas Ratanakuakangwan

This paper presents the additional work of the previous research in order to verify the previously obtained cutting condition by using the different cutting tool geometries. The effects of the cutting conditions with the dry cutting are monitored to obtain the proper cutting condition for the plain carbon steel with the coated carbide tool based on the consideration of the surface roughness and the tool life. The dynamometer is employed and installed on the turret of CNC turning machine to measure the in-process cutting forces. The in-process cutting forces are used to analyze the cutting temperature, the tool wear and the surface roughness. The experimentally obtained results show that the surface roughness and the tool wear can be well explained by the in-process cutting forces. Referring to the criteria, the experimentally obtained proper cutting condition is the same with the previous research except the rake angle and the tool nose radius.

2010 ◽  
Vol 135 ◽  
pp. 265-270 ◽  
Author(s):  
Q.C. Wang ◽  
Qing Long An ◽  
Ming Chen ◽  
Gang Liu ◽  
Yun Shan Zhang

Alloy cast iron cylinder is the mainstream product used in engine nowadays. However, the machinability of alloy cast iron is poor because of its enhanced mechanical properties. In this paper, turning experiment has been conducted to study machinability of alloy cast iron with uncoated and coated carbide tools under dry cutting condition. The results of the experiment indicated that the turning performance of alloy cast iron with coated tool was much better than uncoated tool in terms of cutting force coefficients and tool wear. Feed rate has a great influence on surface roughness, and appropriate tool wear is benefit of finished surface roughness.


Author(s):  
A Bovas Herbert Bejaxhin ◽  
G Paulraj ◽  
G Jayaprakash ◽  
V Vijayan

This research investigation has been carried out in Computer Numerical Control (CNC) turning of 40–50 Hardness Rockwell C (HRC) hardened high chromium high carbon steel (HCHCR-D3) specimen for the findings of surface roughness (Ra) and the tool wear. The HCHCR-D3 steel, which has excellent abrasion and wear resistance, is machined with the physical vapor deposition (PVD) coated carbide (CNMG) turning insert nomenclature based on shape, clearance angle, tolerance and type of tool inserts. The coatings preferred are Titanium Nitrate (TiN), Aluminium Chromium Nitrate (AlCrN) and Latuma for the coating thickness of 3–4μm. The varying input parameters of speed and depth of cut under constant feed rate are used as machining parameters for this CNC turning operation. The machined surface characterization and tool wear have been investigated analytically in this manuscript along with the predicted results of effective stresses and temperatures under dynamic cutting conditions in Deform 3D can be related. The outcomes indicate that the depth of cut and the hardening effect (HRC) are the major influencing parameter on surface roughness. Less tool wear and machining time are obtained by the usage of coated CNMG tool insert for high-speed cutting conditions which results in minimization of wear interruption and growth in surface improvements.


2013 ◽  
Vol 690-693 ◽  
pp. 2540-2549 ◽  
Author(s):  
Somkiat Tangjitsitcharoen

This paper presents the surface roughness model which is proposed and developed to predict the surface roughness in the CNC turning of the carbon steel with the coated carbide tool under various cutting conditions by using the response surface analysis with the Box-Behnken design based on the experimental results. The in-process monitoring of the cutting force and the cutting temperature is utilized to analyze the relation between the surface roughness and the cutting condition. The tool dynamometer and the infrared pyrometer are employed and installed on the turret of CNC turning machine to measure the in-process cutting force and cutting temperature. The models of cutting force ratio and cutting temperature are also developed based on the experimental data. The optimum cutting condition is determined referring to the minimum surface roughness of the surface plot, which is obtained from the developed surface roughness model. The experimental results show that the higher cutting speed gives the better surface roughness due to the higher cutting temperature, however the tool life becomes shorter. The feed rate is the most significant factor which affects the surface roughness, while a small depth of cut helps to improve the surface roughness. The effectiveness of the surface roughness prediction model has been proved by utilizing an analysis of variance (ANOVA) at 95% confident level. Hence, the surface roughness can be predicted and obtained easily referring to the developed surface roughness model.


2020 ◽  
Vol 997 ◽  
pp. 85-92
Author(s):  
Abang Mohammad Nizam Abang Kamaruddin ◽  
Abdullah Yassin ◽  
Shahrol Mohamaddan ◽  
Syaiful Anwar Rajaie ◽  
Muhammad Isyraf Mazlan ◽  
...  

One of the most significant factors in machining process or metal cutting is the cutting tool performance. The rapid wear rate of cutting tools and cutting forces expend due to high cutting temperature is a critical problem to be solved in high-speed machining process, milling. Near-dry machining such as minimum quantity lubrication (MQL) is regarded as one of the solutions to solve this problem. However, the function of MQL in milling process is still uncertain so far which prevents MQL from widely being utilized in this specific machining process. In this paper, the mechanism of cutting tool performance such as tool wear and cutting forces in MQL assisted milling is investigated more comprehensively and the results are compared in three different cutting conditions which is dry cutting, wet cutting (flooding) and MQL. The MQL applicator is constructed from a household grade low-cost 3D printing technique. The chips surface of chips formation in each cutting condition is also observed using Scanning Electron Microscopy (SEM) machine. It is found out that wet cutting (flooding) is the best cutting performance compare to MQL and dry cutting. However, it can also be said that wet cutting and MQL produced almost the same value of tool wear and cutting forces as there is negligible differences in average tool wear and cutting forces between them based on the experiment conducted.


2015 ◽  
Vol 77 (27) ◽  
Author(s):  
A. H. Musfirah ◽  
J. A. Ghani ◽  
C. H. Che Haron ◽  
M. S. Kasim

In tribology phenomenon, surface roughness has become one of the most important factors that contributed to the evaluation of part quality during machining operation. In order to understand the behavior of cryogenic cooling assistance in machining Inconel 718, this paper aims to provide better understanding of tribological characterization of liquid nitrogen near the cutting zone of this material in ball end milling process. Experiments were performed using a multi-layer TiAlN/AlCrN-coated carbide inserts under cryogenic and dry cutting condition. A transient milling simulation model using Third Wave Advantedge has been done in order to gain in-depth understanding of the thermomechanical aspects of machining and their influence on resulted part quality. The cryogenic results of the cutting temperature, cutting forces and surface roughness of the ball nose cutting tool have been compared with those of dry machining. Finally, experimental results proved that cryogenic implementation can  decrease the amount of heat transferred to the tool up to almost 70% and improve the surface roughness to a maximum of 31% when compared with dry machining. Furthermore, the microstructure of machined workpiece revealed that cryogenic cooling also can reduce a plastic deformation at the cutting surface as compared with the dry machining. 


2014 ◽  
Vol 695 ◽  
pp. 676-679 ◽  
Author(s):  
Abdullah Yassin ◽  
Chong Yaw Teo

This paper presents an experimental investigation on effects of pressure and nozzle angle of minimal quantity lubrication (MQL) on cutting temperature and flank wear in turning. In manufacturing industries, there are always demands for the optimum cutting conditions for the most economical manufacturing cost. Hence, reduction in tool wear is essential for less expenditure with the knowledge of optimum cutting conditions of MQL. MQL, also known as near dry machining, has been acknowledged as an effective cooling technique in machining by applying vegetable oils in replacing the conventional flooding method due to environmental issues. By varying the operating pressures and nozzle angle with respect to the cutting zone, cutting temperature and flank wear are measured using a calibrated tool work thermocouple and SPG video microscope. Comparison was made between dry cutting, water mist cooling and MQL method with palm oil. Results showed that MQL with palm oil exhibits best cooling efficiency at 5 bar pressure and nozzle angle of 20o with reduction of 35% in tool wear and 23% in cutting temperature at higher cutting speeds.


2011 ◽  
Vol 264-265 ◽  
pp. 894-900 ◽  
Author(s):  
Mokhtar Suhaily ◽  
A.K.M. Nurul Amin ◽  
Anayet Ullah Patwari ◽  
Nurhayati Ab. Razak

Hardened materials like AISI H13 steel are generally regarded as s difficult to cut materials because of their hardness due to intense of carbon content, which however allows them to be used extensively in the hot working tools, dies and moulds. The challenges in machining steels at their hardened state led the way to many research works in amelioration its machinability. In this paper, preheating technique has been used to improve the machinability of H13 hardened steel for different cutting conditions. An experimental study has been performed to assess the effect of workpiece preheating using induction heating system to enhance the machinability of AISI H13. The preheated machining of AISI H13 for two different cutting conditions with TiAlN coated carbide tool is evaluated by examining tool wear, surface roughness and vibration. The advantages of preheated machining are demonstrated by a much extended tool life and stable cut as lower vibration/chatter amplitudes. The effects of preheating temperature were also investigated on the chip morphology during the end milling of AISI H13 tool steel, which resulted in reduction of chip serration frequency. The preheating temperature was maintained below the phase change temperature of AISI H13. The experimental results show that preheated machining led to appreciable increasing tool life compared to room temperature machining. Abrasive wear, attrition wear and diffusion wear are found to be a very prominent mechanism of tool wear. It has been also observed that preheated machining of the material lead to better surface roughness values as compared to room temperature machining.


Sign in / Sign up

Export Citation Format

Share Document