scholarly journals Flow Localization Behavior of Elasto-Viscoplastic Plane-Strain Blocks under High Strain Rate.

1994 ◽  
Vol 60 (570) ◽  
pp. 461-466 ◽  
Author(s):  
Yoshihiro Tomita ◽  
Tsuyoshi Higo ◽  
Koji Mimura ◽  
Yuji Kouma
2018 ◽  
Vol 183 ◽  
pp. 02022
Author(s):  
Vincent Grolleau ◽  
Vincent Lafilé ◽  
Christian C. Roth ◽  
Bertrand Galpin ◽  
Laurent Mahéo ◽  
...  

Among all other stress states achievable under plane stress conditions, the lowest ductility is consistently observed for plane strain tension. For static loading conditions, V-bending of small sheet coupons is the most reliable way of characterising the strain to fracture for plane strain tension. Different from conventional notched tension specimens, necking is suppressed during V-bending which results in a remarkably constant stress state all the way until fracture initiation. The present DYMAT talk is concerned with the extension of the V-bending technique from low to high strain rate experiments. A new technique is designed with the help of finite element simulations. It makes use of modified Nakazima specimens that are subjected to V-bending. Irrespective of the loading velocity, plane strain tension conditions are maintained throughout the entire loading history up to fracture initiation. Experiments are performed on specimens extracted from aluminum 2024-T3 and dual phase DP450 steel sheets. The experimental program includes quasi static loading conditions which are achieved on a universal testing machine. In addition, high strain rate experiments are performed using a specially-designed drop tower system. In all experiments, images are acquired with two cameras to determine the surface strain history through stereo Digital Image Correlation (DIC). The experimental observations are discussed in detail and also compared with the numerical simulations to validate the proposed experimental technique


2007 ◽  
Vol 558-559 ◽  
pp. 589-594 ◽  
Author(s):  
M.J. Thomas ◽  
Bradley P. Wynne ◽  
Eric J. Palmiere ◽  
Ken P. Mingard ◽  
Bryan Roebuck

An assessment of the inhomogeneity of microstructure generated within plane strain compression test specimens has been performed using the nickel based superalloy, Waspaloy. Two variables were investigated: the effect of strain rate and the effect of friction at the tool/specimen interface. Tests were performed at 1040°C at nominal strain rates of 0.01 and 1 s-1 with and without a glass based lubricant. At the low strain rate the microstructure was relatively homogeneous regardless of the friction conditions. At the high strain rate there was significant microstructure variation from surface to mid plane which was further exaggerated by increased friction. Quantification of the inhomogeneity, however, is non-trivial in this alloy due to the complicated recrystallisation behaviour it exhibits and difficulty in differentiating between recrystallised and non-recrystallised grains.


2021 ◽  
Vol 250 ◽  
pp. 01020
Author(s):  
Morwan Adlafi ◽  
Bertrand Galpin ◽  
Laurent Mahéo ◽  
Christian C. Roth ◽  
Dirk Mohr ◽  
...  

Under plane stress conditions, most micromechanical and phenomenological models predict a minimum in ductility for plane strain tension stress state. Therefore, the stress state of plane strain tension plays a crucial role in many forming and crash applications and the reliable measurement of the strain to fracture for plane strain tension is particularly crucial when calibrating modern fracture initiation models. Recently, a new experimental technique has been proposed for measuring the strain to fracture for sheet metal after proportional loading under plane strain conditions. The basic configuration of the new setup includes a dihedral punch which applies out-of-plane loading onto a Nakazima-type of discshaped specimen with two symmetric holes and an outer diameter of 60 mm. In the present work, the applicability of the test is extended to high strain rates. High strain rates of about 100/s to 200/s are obtained using a drop weight tower device with an original sensor for load measurements. Quasi static tests are also performed for comparison, keeping the same specimen geometry, image recording parameters and set-up. The effective strains at fracture are compared from quasi-static to high strain rate loading for three different materials, i.e one aluminium alloy and two steels.


Sign in / Sign up

Export Citation Format

Share Document