scholarly journals Efficient Boundary Element Method for Large Scale Corrosion Problem.

1999 ◽  
Vol 65 (635) ◽  
pp. 1493-1497 ◽  
Author(s):  
Kenji AMAYA ◽  
Naoki NARUSE ◽  
Shigeru AOKI ◽  
Matsuho MIYASAKA
Author(s):  
Yijun Liu ◽  
Milind Bapat

Some recent development of the fast multipole boundary element method (BEM) for modeling acoustic wave problems in both 2-D and 3-D domains are presented in this paper. First, the fast multipole BEM formulation for 2-D acoustic wave problems based on a dual boundary integral equation (BIE) formulation is presented. Second, some improvements on the adaptive fast multipole BEM for 3-D acoustic wave problems based on the earlier work are introduced. The improvements include adaptive tree structures, error estimates for determining the numbers of expansion terms, refined interaction lists, and others in the fast multipole BEM. Examples involving 2-D and 3-D radiation and scattering problems solved by the developed 2-D and 3-D fast multipole BEM codes, respectively, will be presented. The accuracy and efficiency of the fast multipole BEM results clearly demonstrate the potentials of the fast multipole BEM for solving large-scale acoustic wave problems that are of practical significance.


MATEMATIKA ◽  
2019 ◽  
Vol 35 (3) ◽  
Author(s):  
Nor Afifah Hanim Zulkefli ◽  
Yeak Su Hoe ◽  
Munira Ismail

In numerical methods, boundary element method has been widely used to solve acoustic problems. However, it suffers from certain drawbacks in terms of computational efficiency. This prevents the boundary element method from being applied to large-scale problems. This paper presents proposal of a new multiscale technique, coupled with boundary element method to speed up numerical calculations. Numerical example is given to illustrate the efficiency of the proposed method. The solution of the proposed method has been validated with conventional boundary element method and the proposed method is indeed faster in computation.


2010 ◽  
Vol 20-23 ◽  
pp. 76-81 ◽  
Author(s):  
Hai Lian Gui ◽  
Qing Xue Huang

Based on fast multipole boundary element method (FM-BEM) and mixed variational inequality, a new numerical method named mixed fast multipole boundary element method (MFM-BEM) was presented in this paper for solving three-dimensional elastic-plastic contact problems. Mixed boundary integral equation (MBIE) was the foundation of MFM-BEM and obtained by mixed variational inequality. In order to adapt the requirement of fast multipole method (FMM), Taylor series expansion was used in discrete MBIE. In MFM-BEM the calculation time was significant decreased, the calculation accuracy and continuity was also improved. These merits of MFM-BEM were demonstrated in numerical examples. MFM-BEM has broad application prospects and will take an important role in solving large-scale engineering problems.


2010 ◽  
Vol 439-440 ◽  
pp. 80-85
Author(s):  
Hai Lian Gui ◽  
Qing Xue Huang ◽  
Ya Qin Tian ◽  
Zhi Bing Chu

Based on fast multipole boundary element method (FM-BEM) and mixed variational inequality, a new method named mixed fast multipole boundary element method (MFM-BEM) was presented in this paper. In order to improve calculation time and accuracy, incompatible elements as interpolation functions were used in the algorithm. Elements were optimized by mixed incompatible elements and compatible elements. On the one hand, the difficult to satisfy precise coordinate was avoided which caused by compatible elements; on the other hand, the merits of MFM-BEM were retained. Through analysis of example, it was conclusion that calculation time and accuracy were improved by MFM-BEM, calculation continuity was also better than traditional FM-BEM. With increasing of degree of freedom, calculation time of MFM-BEM grew slower than the time of traditional FM-BEM. So MFM-BEM provided a theoretical basis for solving large-scale engineering problems.


2020 ◽  
Vol 1 (01) ◽  
pp. 58-63
Author(s):  
Mohammed Aldlemy

Boundary element method applications with inverse solution are used to apply the indirect analysis for modeling of corrosion problem. Laplace equation has been used to model the electrical potential in the electrolyte surface. In this paper a computer modeling has been developed to visualize the effect of conductivity value in corrosion problem. Genetic algorithm is used to create the conductivity value based on the mechanics of natural selection and genetics. The boundary element method is then calculating the potential value of the whole domain. FORTRAN and MATLAB program have been developed to calculate and visualize the potential distribution in the domain. Two-dimensional example problems are analyzed to demonstrate the application of the proposed boundary element modeling procedure.


1993 ◽  
Vol 01 (04) ◽  
pp. 455-468 ◽  
Author(s):  
Z. S. CHEN ◽  
G. HOFSTETTER ◽  
H. A. MANG

A 3D boundary element method for the determination of the acoustic eigenfrequencies of car compartments, characterized by a unified treatment of Robin, Dirichlet, and Neumann boundary conditions, is presented. The drawback of frequency-dependent matrices of the eigenvalue problem is overcome by means of the Particular Integral Method. Thus, the standard numerical algorithms for the extraction of eigenvalues can be applied. The numerical study contains both a comparison of numerical results with analytical solutions of a simple problem with different types of boundary conditions and a comparison of numerical results of a large-scale problem with respective numerical results, computed on the basis of the finite element method. In addition, for the latter example, different numerical algorithms for the eigenvalue extraction are examined.


Sign in / Sign up

Export Citation Format

Share Document