scholarly journals Prediction of Residual Stress and Welding Deformation Generated by Pipe Welding Through the Medium of Inherent Strain.

2000 ◽  
Vol 66 (642) ◽  
pp. 374-381 ◽  
Author(s):  
Toshiharu NOMOTO ◽  
Toshio TERASAKI
2019 ◽  
Vol 9 (22) ◽  
pp. 4906 ◽  
Author(s):  
Yongtai Kim ◽  
Jaewoong Kim ◽  
Sungwook Kang

The welding process, which accounts for about 60% of the shipbuilding process, inevitably involves weld deformation. Considering this, productivity can be significantly increased if weld deformation can be predicted during the design phase, taking into account the fabrication order. However, the conventional welding deformation prediction method using thermo-elasto-plastic analysis requires a long analysis time, and the welding deformation prediction method using equivalent load analysis has a disadvantage in that the welding residual stress cannot be considered. In this study, an inherent strain chart using a solid-spring model with two-dimensional constraints is proposed to predict the equivalent strain. In addition, the welding deformation prediction method proposed in this study, the equivalent strain method (ESM), was compared with the ship block experimental results (EXP), elasto-plastic analysis (EPA) results, and equivalent load analysis (ELM) results. Through this comparison, it was found that the application of the equivalent strain method made it possible to quickly and accurately predict weld deformation in consideration of the residual stress of the curved double-bottom block used in the shipyard.


2015 ◽  
Vol 84 (1) ◽  
pp. 66-74
Author(s):  
Masahito MOCHIZUKI ◽  
Yoshiki MIKAMI ◽  
Shigetaka OKANO ◽  
Masakazu SHIBAHARA

2017 ◽  
Vol 753 ◽  
pp. 305-309 ◽  
Author(s):  
Xu Lu

The welding H-section beam has good mechanical properties with its superior structure. So they become the main components of steel structure and have been widely used. In this paper, the welded H-section beam is used as the research object. The finite element simulation model is established. The heat source parameters are determined. The deformation of the steel due to the welding process is studied. The results show that the bottom plate and the bottom plate inward bending is about 2.32mm cause by welding process. The residual stress can reach 400MPa.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Wei Liang ◽  
Hidekazu Murakawa

Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results.


Sign in / Sign up

Export Citation Format

Share Document