scholarly journals Welding Structure and Tensile-Shear Properties of Friction-Stir Spot Welds Joined by Scrolled Groove Shoulder Tool without Probe in Aluminium Alloy

2009 ◽  
Vol 75 (750) ◽  
pp. 228-234 ◽  
Author(s):  
Yasunari TOZAKI ◽  
Yoshihiko UEMATSU ◽  
Keiro TOKAJI
2008 ◽  
Vol 2008 (0) ◽  
pp. _GS0702-1_-_GS0702-2_
Author(s):  
Yasunari Tozaki ◽  
Yoshihiko Uematsu ◽  
Keiro Tokaji

2021 ◽  
Vol 118 (1) ◽  
pp. 110
Author(s):  
Omer Ekinci ◽  
Zulkuf Balalan

7075-T651 aluminium alloy sheets were overlapped and friction stir spot welded using two welding tools having different pin geometries (one with a conical pin and other with a triangular pin) and 800, 1200 and 1600 revolution per minute (rpm) tool rotation speeds at a constant tool plunge and removal speed of 7.3 mm/min, tool plunge depth of 3.8 mm and tool dwell time of 5 s. Microstructure, Vickers microhardness, tensile shear strength, fracture surface after tensile shear test and impact energy of the produced friction stir spot welds were examined. As a result, the welds made via triangular pin tool had considerably higher tensile shear loads than the welds made via conical pin tool since the weld bond widths (stir zones) of the welds made via triangular pin tool were larger. The strongest welds made at 1200 rpm for conical pin tool and triangular pin tool. The tensile shear loads of the welds increased significantly when tool rotation speed increased from 800 to 1200 rpm for both welding tools and then decreased slightly for triangular pin tool and dramatically for conical pin tool with further increasing tool rotation speed from 1200 to 1600 rpm. Maximum tensile shear load of 7.776 kN and impact energy of 16 J obtained in the weld made at 1200 rpm using triangular pin tool. The welds made at 800 rpm had lowest impact energy. The lowest hardness values found in the heat affected zones of the welds. Circumferential fracture mode for conical pin tool welds and nugget pull-out fracture mode for triangular pin tool welds observed after tensile tests.


2014 ◽  
Vol 59 (1) ◽  
pp. 221-224 ◽  
Author(s):  
M.K. Kulekci

Abstract Aluminium and its alloys have been used in automotive technology since the first model of the car. The need for aluminium material is getting increased for weight reduction, improved fuel economy and vehicle performance. The amount of the aluminium used in a car is mainly related with joining processes of aluminium alloy. This can be achieved by developing the welding techniques for aluminium alloys. The purpose of this study was to determine the effects of friction stir spot welding parameters on tensile shear strength of friction stir spot welded lap joint EN AW 5005 Aluminium alloy. The variable parameters were tool rotation (rpm), dwell time (s) and the tool pin height (mm). Tensile shear test results indicated that the weld performance was significantly affected by the tool rotation, dwell time and the tool pin height. The results of the study indicates that there are optimum process parameters which give the highest tensile shear strength.


2020 ◽  
Vol 7 ◽  
pp. 25
Author(s):  
Delphine Mulaba-Kapinga ◽  
Kasongo Didier Nyembwe ◽  
Omolayo Michael Ikumapayi ◽  
Esther Titilayo Akinlabi

The work presents the friction stir spot welding (FSSW) of AA6063. The evolving properties due to the influence of process parameters and the efficacy of metallurgical, structural, mechanical, and electrochemical integrities were studied. FSSW was conducted on 2mm thickness by varying the rotational speed of 600, 900 and 1200 rpm and the dwell time at 10 and 15 s. The evolving microstructures, hardness, corrosion, shear tensile behaviours and X-ray diffraction characteristics of the as-received material and the welds were studied. As the tool rotational speed increased at a constant dwell time, a smooth and debris free spot welds were noticed, more HAZ formations became visible and more intermetallic phases of aluminium magnesium (AlMg) were formed although with very low peaks during structural assessment. Furthermore, the hardness values increased up to a certain limit and then decreased, the corrosion properties in artificial seawater (ASW) shown significant improvement on the spot-welded samples and the tensile shear strength was also improved. It would be recommended that spot welds at 900 rpm and 10 and/or 15 s for applications where the hardness is significant imperative and at 1200 rpm with 10 and/or 15 s dwell time where higher tensile shear strength is required and lastly, 1200 rpm at 15 s where corrosion application is significant.


Sign in / Sign up

Export Citation Format

Share Document