scholarly journals Computation of transonic cascade flow using the euler and Navier-Stokes equations of contravariant velocities.

1989 ◽  
Vol 55 (515) ◽  
pp. 1943-1951
Author(s):  
Satoru YAMAMOTO ◽  
Hisaaki DAIGUJI ◽  
Kazumichi ITO
Author(s):  
A. Arnone ◽  
S. S. Stecco

This paper presents results which summarize the work carried out during the last three years to improve the efficiency and accuracy of numerical predictions in turbomachinery flow calculations. A new kind of non-periodic C-type grid is presented and a Runge-Kutta scheme with accelerating strategies is used as a flow solver. The code capability is presented by testing four different blades at different exit Mach numbers in transonic regimes. Comparison with experiments shows the very good reliability of the numerical prediction. In particular the loss coefficient seems to be correctly predicted by using the well-known Baldwin-Lomax turbulence model.


Author(s):  
S. J. Shamroth ◽  
H. McDonald ◽  
W. R. Briley

A numerical solution procedure for the ensemble-averaged compressible time-dependent Navier-Stokes equations is applied to the transonic cascade flow field. The equations are solved by the consistently split linearized block implicit (LBI) method of Briley and McDonald. Boundary conditions are set so as to specify upstream total pressure and downstream static pressure. Turbulence is modeled by a mixing length model. Predictions are made for flow through a Jose Sanz controlled diffusion cascade and the method yields converged solutions within a relatively small number of time steps (≈ 150). Although to date comparisons with data have not been made, the results show the expected cascade flow field features.


Author(s):  
Chen Naixing ◽  
Zhang Fengxian

A method for solving the Navier-Stokes equations of the rotating blade cascade flow on S1 stream surface of revolution is developed in the present paper. In this paper a complete set of full and simplified Navier-Stokes equations is given which includes stream-function equation, energy equation and entropy equation, equation of state for a perfect gas, formula for estimating density and formulas for calculating viscous forces, work done by viscous force, dissipation function and heat-transfer term. A comparison between the full and the simplified Navier-Stokes equations is made. The viscous terms of both full and simplified Navier-Stokes equation solutions are also compared in the present paper. The comparison shows that the simplified Navier-Stokes equations are applicable.


1986 ◽  
Vol 108 (1) ◽  
pp. 93-102 ◽  
Author(s):  
B. C. Weinberg ◽  
R.-J. Yang ◽  
H. McDonald ◽  
S. J. Shamroth

The multidimensional, ensemble-averaged, compressible, time-dependent Navier-Stokes equations have been used to study the turbulent flow field in two and three-dimensional turbine cascades. The viscous regions of the flow were resolved and no-slip boundary conditions were utilized on solid surfaces. The calculations were performed in a constructive ‘O’-type grid which allows representation of the blade rounded trailing edge. Converged solutions were obtained in relatively few time steps (∼ 80–150) and comparisons for both surface pressure and heat transfer showed good agreement with data. The three-dimensional turbine cascade calculation showed many of the expected flow-field features.


1988 ◽  
Vol 110 (3) ◽  
pp. 339-346 ◽  
Author(s):  
O. K. Kwon

A robust, time-marching Navier–Stokes solution procedure based on the explicit hopscotch method is presented for solution of steady, two-dimensional, transonic turbine cascade flows. The method is applied to the strong conservation form of the unsteady Navier–Stokes equations written in arbitrary curvilinear coordinates. Cascade flow solutions are obtained on an orthogonal, body-conforming “O” grid with the standard k–ε turbulence model. Computed results are presented and compared with experimental data.


1984 ◽  
Vol 106 (2) ◽  
pp. 383-390 ◽  
Author(s):  
S. J. Shamroth ◽  
H. McDonald ◽  
W. R. Briley

A numerical solution procedure for the ensemble-averaged, compressible, time-dependent Navier-Stokes equations is applied to predict the flow about a cascade of airfoils operating in the transonic flow regime. The equations are solved by the consistently split, linearized block implicit (LBI) method of Briley and McDonald. Boundary conditions are set so as to specify upstream total pressure and downstream static pressure. Turbulence is modeled by a mixing length model. Predictions are made for flow through a compressor cascade configuration. The method yields converged solutions within a relatively small number of time steps ( ≈ 150), which give good comparisons with experimental data.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


Sign in / Sign up

Export Citation Format

Share Document