scholarly journals Deformation and Collapse of a Liquid Column due to Shock Wave and Shock-Wave-Induced High-Speed Air Flow.

1992 ◽  
Vol 58 (551) ◽  
pp. 2068-2073
Author(s):  
Teruhiko YOSHIDA ◽  
Kazuyoshi TAKAYAMA ◽  
Masakazu HAMAMURA
1989 ◽  
Vol 55 (514) ◽  
pp. 1607-1612
Author(s):  
Teruhiko YOSHIDA ◽  
Kazuyoshi TAKAYAMA ◽  
Andrzej Wierzba
Keyword(s):  
Air Flow ◽  

1972 ◽  
Vol 9 (1) ◽  
pp. 13-18 ◽  
Author(s):  
PETER J. TORVIK ◽  
RONALD J. F. PRATER

2015 ◽  
Vol 74 (8) ◽  
Author(s):  
Waskito Nugroho ◽  
N. E. Khamsan ◽  
M. Abdullah ◽  
K. Ganesan

High-speed videography based on double pulse of Nd:YAG laser to capture dynamic expansion of shock wave is reported. A Q-switched Nd:YAG laser was employed  as an input signal and disturbance source. Nitrodye laser was utilized as a flash. The shock wave generation was recorded via CCD video camera. Synchronization is organized associated with a digital delay generator. Nd:YAG laser was focused to generate an optical breakdown in distilled water. Double pulses were generated within the interval of one second. The first pulse of Nd:YAG laser was used to trigger the dye laser and the second pulse to generate shock wave. Manipulation of delay times allow to freeze the dynamic expansion of shock wave. The double pulse technique is appropriated for laser system with the absence of external trigger unit. Lack of electronic failure is the advantage offer by the double pulse technique.


Author(s):  
V. S. IVANOV ◽  
◽  
V. S. AKSENOV ◽  
S. M. FROLOV ◽  
P. A. GUSEV ◽  
...  

Modern high-speed unmanned aerial vehicles are powered with small-size turbojets or ramjets. Existing ramjets operating on the thermodynamic cycle with de§agrative combustion of fuel at constant pressure are efficient at flight Mach numbers M ranging from about 2 to 6.


1988 ◽  
Vol 190 ◽  
pp. 409-425 ◽  
Author(s):  
J. P. Dear ◽  
J. E. Field

This paper describes a method for examining the collapse of arrays of cavities using high-speed photography and the results show a variety of different collapse mechanisms. A two-dimensional impact geometry is used to enable processes occurring inside the cavities such as jet motion, as well as the movement of the liquid around the cavities, to be observed. The cavity arrangements are produced by first casting water/gelatine sheets and then forming circular holes, or other desired shapes, in the gelatine layer. The gelatine layer is placed between two thick glass blocks and the array of cavities is then collapsed by a shock wave, visualized using schlieren photography and produced from an impacting projectile. A major advantage of the technique is that cavity size, shape, spacing and number can be accurately controlled. Furthermore, the shape of the shock wave and also its orientation relative to the cavities can be varied. The results are compared with proposed interaction mechanisms for the collapse of pairs of cavities, rows of cavities and clusters of cavities. Shocks of kbar (0.1 GPa) strength produced jets of c. 400 m s−1 velocity in millimetre-sized cavities. In closely-spaced cavities multiple jets were observed. With cavity clusters, the collapse proceeded step by step with pressure waves from one collapsed row then collapsing the next row of cavities. With some geometries this leads to pressure amplification. Jet production by the shock collapse of cavities is suggested as a major mechanism for cavitation damage.


Sign in / Sign up

Export Citation Format

Share Document