scholarly journals Direct Numerical Simulation for the Pelet Number Effect on Turbulent Dispersion of Substance in Isotropic Turbulence.

1995 ◽  
Vol 61 (584) ◽  
pp. 1285-1292
Author(s):  
Hiroyuki Tsunoda ◽  
Stephen Pope B. ◽  
Ikuo Nakamura
1999 ◽  
Vol 392 ◽  
pp. 45-71 ◽  
Author(s):  
ILIAS ILIOPOULOS ◽  
THOMAS J. HANRATTY

Dispersion of fluid particles in non-homogeneous turbulence was studied for fully developed flow in a channel. A point source at a distance of 40 wall units from the wall is considered. Data obtained by carrying out experiments in a direct numerical simulation (DNS) are used to test a stochastic model which utilized a modified Langevin equation. All of the parameters, with the exception of the time scales, are obtained from Eulerian statistics. Good agreement is obtained by making simple assumptions about the spatial variation of the time scales.


2013 ◽  
Vol 5 (3) ◽  
pp. 435-445
Author(s):  
M. S. I. Mallik ◽  
M. A. Uddin ◽  
M. A. Rahman

Direct numerical simulation (DNS) in two-dimensional homogeneous isotropic turbulence is performed by using the Spectral method at a Reynolds number Re = 1000 on a uniformly distributed grid points. The Reynolds number is low enough that the computational grid is capable of resolving all the possible turbulent scales. The statistical properties in the computed flow field show a good agreement with the qualitative behavior of decaying turbulence. The behavior of the flow structures in the computed flow field also follow the classical idea of the fluid flow in turbulence. Keywords: Direct numerical simulation, Isotropic turbulence, Spectral method. © 2013 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved. doi:http://dx.doi.org/10.3329/jsr.v5i3.12665 J. Sci. Res. 5 (3), 435-445 (2013)  


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Xingtuan Yang ◽  
Nan Gui ◽  
Gongnan Xie ◽  
Jie Yan ◽  
Jiyuan Tu ◽  
...  

This study investigates the anisotropic characteristics of turbulent energy dissipation rate in a rotating jet flow via direct numerical simulation. The turbulent energy dissipation tensor, including its eigenvalues in the swirling flows with different rotating velocities, is analyzed to investigate the anisotropic characteristics of turbulence and dissipation. In addition, the probability density function of the eigenvalues of turbulence dissipation tensor is presented. The isotropic subrange of PDF always exists in swirling flows relevant to small-scale vortex structure. Thus, with remarkable large-scale vortex breakdown, the isotropic subrange of PDF is reduced in strongly swirling flows, and anisotropic energy dissipation is proven to exist in the core region of the vortex breakdown. More specifically, strong anisotropic turbulence dissipation occurs concentratively in the vortex breakdown region, whereas nearly isotropic turbulence dissipation occurs dispersively in the peripheral region of the strong swirling flows.


2012 ◽  
Vol 16 (5) ◽  
pp. 1510-1514
Author(s):  
Tian Li ◽  
Li-Hao Zhao ◽  
Xiao-Ke Ku ◽  
Helge Andersson ◽  
Terese Lovas

This paper investigates the performance of Reynolds-averaged Navier-Stokes model on dispersion of particles in wall turbulence. A direct numerical simulation of wall-bounded channel flow with particles suspensions was set as a benchmark. The standard k-? model coupled with two different eddy interaction models was used in Reynolds-averaged Navier-Stokes model and compared to the direct numerical simulation. Detailed comparisons between direct numerical simulation and Reynolds-averaged Navier-Stokes model on particle distribution evolving over time were carried out.


Sign in / Sign up

Export Citation Format

Share Document