scholarly journals Drag Reduction in Flow Past a Circular Cylinder in Water/Fine Solid Particle Suspension.

1996 ◽  
Vol 62 (603) ◽  
pp. 3818-3823 ◽  
Author(s):  
Keizo WATANABE ◽  
Yuzhou ZHANG ◽  
Takao FUJITA
Volume 4 ◽  
2004 ◽  
Author(s):  
Takao Fujita ◽  
Keizo Watanabe

Laminar drag reduction is achieved by using a hydrophobic surface. In this method, fluid slip is applied at the hydrophobic surface. An initial experiment to clarify for a laminar skin friction reduction was conducted using ducts with a highly water-repellent surface. The surface has a fractal-type structure with many fine grooves. Fluid slip at a hydrophobic surface has been analyzed by applying a new wet boundary condition. In this simulation, an internal flow is assumed to be a two-dimensional laminar flow in a rectangular duct and an external flow is assumed to be a two-dimensional laminar flow past a circular cylinder. The VOF technique has been used as the method for tracking gas-liquid interfaces, and the CSF model has been used as the method for modeling surface tension effects. The wet boundary condition for the hydrophobic property on the surface has been determined from the volume ratio in contact with water near the surface. The model with a stable gas-liquid interface and the experimental results of flow past a circular cylinder at Re = 250 without growing the Karman vortex street are made, and these results show that laminar drag reduction occurring due to fluid slip can be explained in this model.


2014 ◽  
Vol 493 ◽  
pp. 9-14
Author(s):  
Dedy Zulhidayat Noor ◽  
Eddy Widiyono ◽  
Suhariyanto ◽  
Lisa Rusdiyana ◽  
Joko Sarsetiyanto

Laminar flow past a circular cylinder has been studied numerically at low Reynolds number. The upstream and downstream rods have been used as passive control in order to reduce hydrodynamics forces acting on the cylinder. Both the upstream and downstream rods significantly contribute in reduction of drag and fluctuating lift compared to single cylinder without the rods. More detail, the upstream installation rod is more dominant in drag reduction than the downstream one. On the contrary, the downstream rod has suppressed the magnitude of the fluctuating lift almost twice that of the upstream configuration. Placing the two rods together as the upstream and downstream passive control in tandem arrangement has given more hydrodynamics forces reduction than the single rod configurations.Keywords:circular cylinder, passive control, tandem, drag, lift.


2010 ◽  
Vol 665 ◽  
pp. 238-273 ◽  
Author(s):  
CHANG-YUE XU ◽  
LI-WEI CHEN ◽  
XI-YUN LU

Numerical investigation of the compressible flow past a wavy cylinder was carried out using large-eddy simulation for a free-stream Mach number M∞ = 0.75 and a Reynolds number based on the mean diameter Re = 2 × 105. The flow past a corresponding circular cylinder was also calculated for comparison and validation against experimental data. Various fundamental mechanisms dictating the intricate flow phenomena, including drag reduction and fluctuating force suppression, shock and shocklet elimination, and three-dimensional separation and separated shear-layer instability, have been studied systematically. Because of the passive control of the flow over a wavy cylinder, the mean drag coefficient of the wavy cylinder is less than that of the circular cylinder with a drag reduction up to 26%, and the fluctuating force coefficients are significantly suppressed to be nearly zero. The vortical structures near the base region of the wavy cylinder are much less vigorous than those of the circular cylinder. The three-dimensional shear-layer shed from the wavy cylinder is more stable than that from the circular cylinder. The vortex roll up of the shear layer from the wavy cylinder is delayed to a further downstream location, leading to a higher-base-pressure distribution. The spanwise pressure gradient and the baroclinic effect play an important role in generating an oblique vortical perturbation at the separated shear layer, which may moderate the increase of the fluctuations at the shear layer and reduce the growth rate of the shear layer. The analysis of the convective Mach number indicates that the instability processes in the shear-layer evolution are derived from oblique modes and bi-dimensional instability modes and their competition. The two-layer structures of the shear layer are captured using the instantaneous Lamb vector divergence, and the underlying dynamical processes associated with the drag reduction are clarified. Moreover, some phenomena relevant to the compressible effect, such as shock waves, shocklets and shock/turbulence interaction, are analysed. It is found that the shocks and shocklets which exist in the circular cylinder flow are eliminated for the wavy cylinder flow and the wavy surface provides an effective way of shock control. As the shock/turbulence interaction is avoided, a significant drop of the turbulent fluctuations around the wavy cylinder occurs. The results obtained in this study provide physical insight into the understanding of the mechanisms relevant to the passive control of the compressible flow past a wavy surface.


2020 ◽  
Vol 28 ◽  
pp. 2057-2061
Author(s):  
Sartaj Tanweer ◽  
Anupam Dewan ◽  
Sanjeev Sanghi ◽  
Anuj Kumar Shukla

Sign in / Sign up

Export Citation Format

Share Document