scholarly journals Turbulent Heat Transfer of Natural Convection between Vertical Parallel Plates.

2000 ◽  
Vol 66 (649) ◽  
pp. 2420-2425
Author(s):  
Terumi INAGAKI ◽  
Shinji MARUYAMA
1994 ◽  
Vol 116 (3) ◽  
pp. 577-587 ◽  
Author(s):  
S. H. Kim ◽  
N. K. Anand

Two-dimensional turbulent heat transfer between a series of parallel plates with surface mounted discrete block heat sources was studied numerically. The computational domain was subjected to periodic conditions in the streamwise direction and repeated conditions in the cross-stream direction (Double Cyclic). The second source term was included in the energy equation to facilitate the correct prediction of a periodically fully developed temperature field. These channels resemble cooling passages in electronic equipment. The k–ε model was used for turbulent closure and calculations were made for a wide range of independent parameters (Re, Ks/Kf, s/w, d/w, and h/w). The governing equations were solved by using a finite volume technique. The numerical procedure and implementation of the k–ε model was validated by comparing numerical predictions with published experimental data (Wirtz and Chen, 1991; Sparrow et al., 1982) for a single channel with several surface mounted blocks. Computations were performed for a wide range of Reynolds numbers (5 × 104–4 × 105) and geometric parameters and for Pr = 0.7. Substrate conduction was found to reduce the block temperature by redistributing the heat flux and to reduce the overall thermal resistance of the module. It was also found that the increase in the Reynolds number decreased the thermal resistance. The study showed that the substrate conduction can be an important parameter in the design and analysis of cooling channels of electronic equipment. Finally, correlations for the friction factor (f) and average thermal resistance (R) in terms of independent parameters were developed.


2016 ◽  
Vol 685 ◽  
pp. 315-319 ◽  
Author(s):  
Igor V. Miroshnichenko ◽  
Mikhail A. Sheremet

The interaction of conjugate turbulent natural convection and surface thermal radiation in an air-filled square enclosure having heat-conducting solid walls of finite thickness and a heat source has been numerically studied. The primary focus was on the influence of surface emissivity on complex heat transfer. The mathematical model has been formulated in dimensionless variables such as stream function, vorticity and temperature using k-ε turbulent model. The effect of surface emissivity on the average total Nusselt number has been defined. The distributions of streamlines and temperature fields, describing characteristics of the analyzed fluid flow and heat transfer have been obtained. The results clearly show an essential effect of surface radiation on unsteady turbulent heat transfer.


Sign in / Sign up

Export Citation Format

Share Document