scholarly journals Molecular Dynamics Study on Ultra-Thin Liquid Film Sheared between Solid Surfaces (Influence of the Crystal Plane to Energy and Momentum Transfer at the Solid-Liquid Interfaces)

2005 ◽  
Vol 71 (710) ◽  
pp. 2507-2514 ◽  
Author(s):  
Daichi TORII ◽  
Taku OHARA
2019 ◽  
Vol 126 (18) ◽  
pp. 185302 ◽  
Author(s):  
Yuting Guo ◽  
Donatas Surblys ◽  
Yoshiaki Kawagoe ◽  
Hiroki Matsubara ◽  
Taku Ohara

Surfactants ◽  
2019 ◽  
pp. 130-155
Author(s):  
Bob Aveyard

The physical properties of solid/liquid interfaces are more diverse than those of liquid/fluid interfaces, and consequently the interactions giving rise to adsorption of surfactant or polymeric surfactant are more varied. Solid surfaces can be either hydrophilic or hydrophobic, the former being water-wetted and containing polar or ionogenic sites. Electrical charge at the solid surface is neutralized by ions in the inner and outer Helmholtz planes and in the diffuse part of the electrical double layer. Surface charge has a strong influence on adsorption of ionic surfactants. Standard free energies of surfactant adsorption are obtained by use of an appropriate adsorption isotherm such as the Stern–Langmuir equation. Micellar aggregates of various shapes and sizes can also form at solid/liquid interfaces.


Author(s):  
Sheikh Mohammad Shavik ◽  
Mohammad Nasim Hasan ◽  
A. K. M. Monjur Morshed

Molecular dynamics (MD) simulations have been performed to investigate the boiling phenomena of thin liquid film adsorbed on a nanostructured solid surface with particular emphasis on the effect of wetting condition of the solid surface. The molecular system consists of liquid and vapor argon, and solid platinum wall. The nanostructures which reside on top of the solid wall have shape of rectangular block. The solid-liquid interfacial wettability, in other words whether the solid surface is hydrophilic or hydrophobic has been altered for different cases to examine its effect on boiling phenomena. The initial configuration of the simulation domain comprised a three phase system (solid platinum, liquid argon and vapor argon) which was equilibrated at 90 K. After equilibrium period, the wall temperature was suddenly increased from 90 K to 250 K which is far above the critical point of argon and this initiates rapid or explosive boiling. The spatial and temporal variation of temperature and density as well as the variation of system pressure with respect to time were closely monitored for each case. The heat flux normal to the solid surface was also calculated to illustrate the effectiveness of heat transfer for different cases of wetting conditions of solid surface. The results show that the wetting condition of surface has significant effect on explosive boiling of the thin liquid film. The surface with higher wettability (hydrophilic) provides more favorable conditions for boiling than the low-wetting surface (hydrophobic) and therefore, liquid argon responds quickly and shifts from liquid to vapor phase faster in case of hydrophilic surface.


Sign in / Sign up

Export Citation Format

Share Document