scholarly journals Vibration Isolation and Reduction Based on Theory of Variable Structure Systems. 2nd Report. Multi-Degree-of-Freedom Vibration System.

1996 ◽  
Vol 62 (595) ◽  
pp. 837-844
Author(s):  
Hideya YAMAGUCHI ◽  
Masuo ODA ◽  
Shunsuke SHIOYA
2017 ◽  
Vol 37 (3) ◽  
pp. 554-564
Author(s):  
Canchang Liu ◽  
Chicheng Ma ◽  
Jilei Zhou ◽  
Lu Liu ◽  
Shuchang Yue ◽  
...  

A two-degree-of-freedom nonlinear vibration system of a quarter vehicle suspension system is studied by using the feedback control method considered the fractional-order derivative damping. The nonlinear dynamic model of two-degree-of-freedom vehicle suspension system is built and linear velocity and displacement controllers are used to control the nonlinear vibration of the vehicle suspension system. A case of the 1:1 internal resonance is considered. The amplitude–frequency response is obtained with the multiscale method. The asymptotic stability conditions of the nonlinear system can be gotten by using the Routh–Hurwitz criterion and the ranges of control parameters are gained in the condition of stable solutions to the system. The simulation results show that the feedback control can effectively reduce the amplitude of primary resonance, weaken or even eliminate the nonlinear vibration characteristics of the suspension system. Fractional orders have an impact on control performance, which should be considered in the control problem. The study will provide a theoretical basis and reference for the optimal design of the vehicle suspension system.


Author(s):  
K A Edge ◽  
F Gomes de Almeida

A new approach to adaptive control of manipulators is presented in this paper. The proposed controller for each individual axis is of the model reference type, designed through the use of variable structure systems theory. A novel feature of the controller is the introduction of a series-parallel model of the model-following error. The use of this model ensures system stability even if the manipulator design parameters or payload bounds are exceeded. Chattering of the system, associated with variable structure systems, is eliminated by arranging for the control objective to be physically achievable.


Author(s):  
Heejin Lee ◽  

In this paper, a new scheme is presented for the accurate tracking control of the second-order variable structure systems using the variable boundary layer. Up to now, variable structure controller(VSC) applying the variable boundary layer did not remove chattering from an arbitrary initial state of the system trajectory because VSC has used the fixed sliding surface. But, by using the linear time-varying sliding surfaces, the scheme has the robustness against chattering from all states. The suggested method can be applied to the second-order nonlinear systems with parameter uncertainty and extraneous disturbances, and have better tracking performance than the conventional method.To demonstrate the advantages of the proposed algorithm, it is applied to a two-link manipulator.


Sign in / Sign up

Export Citation Format

Share Document