scholarly journals Recursive Decomposed Processing of a Global Stiffness Matrix on Finite Element Method.

1997 ◽  
Vol 63 (612) ◽  
pp. 2665-2670
Author(s):  
Masahiko YAMAMOTO ◽  
Nobuo SAKO ◽  
Fumihiro SUZUMURA ◽  
Gonojo KATAYAMA
2013 ◽  
Vol 834-836 ◽  
pp. 1337-1342
Author(s):  
Hua Hu Cheng ◽  
Ai Min Li ◽  
Ming Wen Guan ◽  
Xian Wei Yang ◽  
Jing Luo

Took two layers of single span lateral sway semi-rigid connecting steel frame to bear vertical load function as the research object, adopting finite element method for solving the bucking load of the whole losing the stability of the semi-rigid connecting steel frame. Using based on the energy method and the three parabolic interpolation deflection curve function to obtain the relationship between the both element ends of internal force and displacement and introducing semi-rigid beam element stiffness matrix and geometric stiffness matrix of element integrate the global stiffness matrix which contains the flexibility of the connections and the component geometry nonlinear, thus deducing the stability characteristic equation of semi-rigid steel frame. And the MATLAB language composition program is applied to calculate the buckling load of overall losing stability of the semi-rigid steel frame, thus obtaining the buckling load of semi-rigid steel frame. The method is a very effective numerical calculating method which can solve the stability problems of relatively complicated stress conditions or relatively complicated structure composition conditions and it can also satisfy the requirement of higher calculation accuracy, easy for programming and calculation and of great practicability.


2019 ◽  
Vol 794 ◽  
pp. 220-225
Author(s):  
Daiki Towata ◽  
Yuichi Tadano

In this study, a novel numerical method to analyze the bifurcation problemof a rate dependent material using the finite element method is proposed. The consistent stiffness matrix, which is required for a bifurcation analysis using the finite element method, for a rate dependent material is generally hard to compute, therefore, a computational method to calculate the tangent stiffness matrix based on a numerical differential is introduced so that exact bifurcation analyses for the rate dependent material can be conducted. A numerical example of the proposed method is demonstrated, and the adequacy of the proposed method is discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Emir Gülümser ◽  
Uğur Güdükbay ◽  
Sinan Filiz

We propose a fast stiffness matrix calculation technique for nonlinear finite element method (FEM). Nonlinear stiffness matrices are constructed using Green-Lagrange strains, which are derived from infinitesimal strains by adding the nonlinear terms discarded from small deformations. We implemented a linear and a nonlinear finite element method with the same material properties to examine the differences between them. We verified our nonlinear formulation with different applications and achieved considerable speedups in solving the system of equations using our nonlinear FEM compared to a state-of-the-art nonlinear FEM.


1983 ◽  
Vol 50 (1) ◽  
pp. 95-100 ◽  
Author(s):  
H. A. Mang ◽  
R. H. Gallagher

Consideration of the dependence of hydrostatic pressure on the displacements may result in significant changes of calculated buckling loads of thin arches and shells in comparison with loads calculated without consideration of this effect. The finite element method has made it possible to quantify these changes. On the basis of a shell theory of small displacements but moderately large rotations, this paper derives consistent incremental equilibrium equations for tracing, via the finite element method, the load-displacement path for thin shells subjected to nonuniform hydrostatic pressure and establishes the buckling condition from the incremental equilibrium equations. Within the framework of the finite element method, the character of hydrostatic pressure as one of a follower load is represented in the so-called pressure-stiffness matrix. For shells with loaded free edges, this matrix is unsymmetric. The principal objective of the present paper is to demonstrate that symmetrization of the pressure stiffness matrix resulting from linearization of the buckling condition yields buckling loads that are identical to the eigenvalues resulting from first-order perturbation analysis of the unsymmetric eigenproblem. A circular cylindrical shell with a free and a hinged end, subjected to hydrostatic pressure, is used as an example of the admissibility of symmetrizing the pressure stiffness matrix and for assessing its effect.


Sign in / Sign up

Export Citation Format

Share Document