coupling stiffness
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 23)

H-INDEX

9
(FIVE YEARS 2)

2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Chenggong Wang ◽  
Diankai Cao ◽  
Xiaoyang Liu ◽  
Yucai Jing ◽  
Wenzhuo Liu ◽  
...  

Bolted shear connectors have the advantages of being easily fitted and dismantled during construction, the initial elastic stiffness of which has a great influence on the structural performance of the connected composite structures. In this paper, the initial elastic behaviors of three types of bolted shear connectors used in steel-concrete composite structures (i.e., the bolt with nonembedded nut, the bolt with single-embedded nut, and the bolt with double-embedded nuts) are investigated using finite element analysis (FEA). After the FE models are verified against the experimental results in other literature, an extensive parametric study is carried out to investigate the effects of eight parameters of the composite structures on the initial shear stiffness and tension stiffness as well as coupling stiffness. Empirical formulas are subsequently developed for obtaining the initial elastic stiffness of the bolted shear connectors, based on which further FEA is performed. The FEA results are in good agreement with the experimental results, illustrating the effectiveness of the empirical formulas.


2022 ◽  
Vol 355 ◽  
pp. 02012
Author(s):  
Zhanghui Wang ◽  
Fei Qi ◽  
Anping Qiu ◽  
Qin Shi

The dual-mass Silicon micro-machined gyroscope was processed by micro-fabrication technology. It could lead to quadrature coupling error and influence the output of the silicon micro-gyroscope. We select two commonly used gyroscope structures and analyze their quadrature coupling coefficient. Firstly, the complete dynamic model is proposed for the DMSG and the theoretical models of sensitivity and orthogonal signals are given by the dynamic model. Second, the influence of support structure on sensitivity and orthogonal signals are analyzed. The sensitivity and orthogonal signal of the two types of DMSG are derived and compared. The results show that the theoretical accuracy of the sensitivity and orthogonal signals can be improved about 50% and 30% after considering the support structure. The type-B gyroscope are insensitive to the Coriolis force (≈13% reduction) when compared to Type-A gyroscope. On the other hand the type-B gyroscope are insensitive to coupling stiffness (≈85% reduction) when compared to Type-A gyroscope. At last, the reliability of the theory is verified by simulations and experiments.


Author(s):  
Frederik Mieth ◽  
Carsten Ulrich ◽  
Berthold Schlecht

AbstractIn order to be able to carry out an optimal gear design with the aim of cost reduction and the careful handling of resources, load capacity is an important criterion for the evaluation of a gear. For the calculation of the flank and root load capacity, a precise loaded tooth contact analysis (LTCA) is necessary. With LTCA software like BECAL, influence numbers are used to calculate the deformation of the gear. These influence numbers are calculated with a BEM-module and considered for calculating the local root stress. This method simplifies the coupling stiffness in tooth width direction with a decay function and neglects the influence of local differences in tooth stiffness. In this publication, this simplification shall be questioned and evaluated.Therefore, a new method for calculating stress with FEM influence vectors is presented. This method enables the calculation of full stress tensors at any desired location in the gear with the efficiency of the influence number method. Additionally, the influence of local stiffness variations in the gear is taken into account. Various gear examples show the influence of material connections at the pinion root and the influence of the rim thickness of a wheel on the root stress. To validate the accuracy and the time efficiency of the new calculation method and to compare the results to current state-of-the-art simulations, a well-documented series of tests from the literature is recalculated and evaluated.


2021 ◽  
Vol 9 ◽  
Author(s):  
Cheng Chen ◽  
Tongguang Wang ◽  
Long Wang

With the development of wind turbines as a result of large-scale and offshore trends, the wind turbine size is becoming increasingly larger. The passive control technique is used to alleviate the increasing loads on the blade for the sake of improving the durability of the wind turbine. The ply design of shells considering the coupling effect of bending and torsion is one of the passive control techniques. The bending torsion coupling stiffness is one of the parameters of the blade section stiffness matrix. In order to fully understand the influence of each blade stiffness parameter on the aeroelastic responses of wind turbines and to consider the influence of structural characteristics on the aeroelastic responses in blade design, the influences and sensitivity of each stiffness parameter in the 6 × 6 stiffness matrix of the blade sections on the aeroelastic responses of the wind turbines are systematically studied under steady wind condition. The aerodynamic forces in the aeroelastic model are calculated by an AeroDyn module based on blade element momentum theory, and the structural dynamic responses of the blade are calculated using generalized Timoshenko beam theory and geometric exact beam theory. The NREL baseline 5 MW wind turbine and blade properties are used in this study, where the diagonal stiffness parameters and non-diagonal stiffness parameters of the matrixes of each blade section are scaled according to certain principles. The results show that the axial stiffness, the flap-wise stiffness, and the torsional stiffness in the diagonal are sensitive to the root loads and tip displacement of the blade. The flap-wise bending torsion coupling stiffness, the flap-wise shear-torsion coupling stiffness, and the edge-wise shear-torsion coupling stiffness in the non-diagonal are also sensitive to the aeroelastic responses. For completeness, the effects of other stiffness parameters on the aeroelastic responses are also analyzed and discussed.


2021 ◽  
Author(s):  
Xuelian Chen ◽  
◽  
Xiaoming Tang ◽  
Shengqing Li ◽  
Yuanda Su ◽  
...  

Cased-hole acoustic-wave modeling using the slip-interface theory is applied to cement bond evaluation, allowing for characterizing various bonding issues caused by poor bonding, lack of a cement, interface roughness and irregularity, micro-annulus, etc. The new theory models the interface between casing and cement (or cement and formation) as a slip boundary governed by normal and tangential coupling stiffness parameters. With the new theory and the stiffness parameters, we can model various wave phenomena for bond quality variation between the free-pipe and well bonded conditions. The modeling shows that wave amplitude variation is primarily controlled by the tangential (or shear) coupling stiffness, providing the theoretical foundation for developing an inversion procedure to estimate this parameter from field acoustic logging data. In the inversion procedure, the maximum stiffness value is first determined by matching the modeled and measured waveform data for the well bonded condition. Using the stiffness value as a reference, the stiffness values for the borehole section of interest are inverted by minimizing the modeled and measured waveform data, resulting in a continuous coupling stiffness curve to characterize the cement bond quality of the borehole section of interest. Because the stiffness parameter is directly related to the cement bond strength, the new stiffness-based method is advantageous over the existing wave-amplitude-based method and can thus better characterize and quantify the cement bond quality.


2021 ◽  
pp. 138491
Author(s):  
Erying Zhao ◽  
Zonglei Guo ◽  
Jie Liu ◽  
Qian Zhang ◽  
Ziyang Guo ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 440
Author(s):  
Wenguo Chen ◽  
Rui Wang ◽  
Huiying Wang ◽  
Shulei Sun

An omnidirectional inertial switch with rectangular spring is proposed in this paper, and the prototype has been fabricated by surface micromachining technology. To evaluate the threshold consistency and stability of omnidirectional inertia switch, the stiffness of rectangular suspension springs is analyzed. The simulation result shows that the coupling stiffness of the rectangular spring suspension system in the non-sensitive direction is a little more than that in the sensitive direction, which indicated that the omnidirectional switching system’s stability is reinforced, attributed to the design of rectangular springs. The dynamic response simulation shows that the threshold of the omnidirectional inertial switch using the rectangular suspension spring has high consistency in the horizontal direction. The prototype of an inertial switch is fabricated and tested successfully. The testing results indicate even threshold distribution in the horizontal direction. The threshold acceleration of the designed inertial switch is about 58 g in the X direction and 37 g in the Z direction; the contact time is about 18 μs.


2021 ◽  
Vol 12 (1) ◽  
pp. 393-404
Author(s):  
Jingyi Gong ◽  
Geng Liu ◽  
Lan Liu ◽  
Long Yang

Abstract. The type and working principle of multi-engine multi-gearbox gearing are introduced. The global dynamic modeling method, based on the generalized finite element theory, and the layered dynamic modeling method, based on the idea of whole first and then partial are proposed, and the dynamic models of three operation modes in the four engines with two shafts are established. The effects of coupling, rotation speed, configuration and power loss on the dynamic response of the system are studied by using the dynamic model. The research results show that the coupling vibration of multi-engine multi-gearbox gearing is obvious at low speed, and the coupling vibration weakens with the increase in speed. Reducing the coupling stiffness can weaken the coupling vibration of the system. The symmetrical structure of the transmission system has the same dynamic response at the symmetrical position. Meshing friction has little effect on the dynamic response of the system. The more power flowing through the cross-connect gearbox, the greater the system power loss. This research provides theoretical support for the low-vibration design of multi-engine multi-gearbox marine gearing and has a positive significance for understanding the coupled vibration characteristics of complex gear systems.


2021 ◽  
Vol 30 ◽  
pp. 263498332110571
Author(s):  
Zhang Ying ◽  
An Liqiang ◽  
Wang Zhangqi

In this paper, the effects of coupling location on the properties of bending-twist modes are proposed. The static test and modal analysis of the composite plates are investigated. Initial coupling effects are first obtained from the static test of the plates. The frequencies, nodal lines, and the mode shapes are then studied experimentally and numerically. A new method is proposed to quantitatively describe the bending-twist coupling performance of laminates using modal assurance criterion. The results show that the coupling location in the middle coupled plates show good coupling effects at lower order vibrations. These results also show that the effect of coupling stiffness. The conclusions can be considered as a reference to analyze the coupling phenomenon of large composite wind turbine blades.


2020 ◽  
Vol 20 (13) ◽  
pp. 2041016
Author(s):  
Hayder A. Rasheed ◽  
Habiburrahman Ahmadi ◽  
Abdul H. Halim

This study addresses the analytical treatment of a closed-form buckling equation for lateral-torsional stability of thin web composite cantilever beams under mid-height tip force. The beam is composed of random ply fiber orientations. Classical lamination theory is embedded into the Vlasov plate formulation to make up the framework of the analytical treatment. A closed-form solution is realized when an innovative dimensional reduction is extended to the 3D constitutive stiffness matrix. This was made possible through a two-step process in which the shear strain, lateral curvature, and twisting curvature are retained first. By condensing the shear strain variable, effective lateral, torsional, and coupling stiffness terms were formulated. Applying the equilibrium conditions in the deformed configuration, two differential equations are obtained in terms of the lateral curvature and twisting angle. Eliminating the lateral curvature, the twisting angle differential equation with nonconstant coefficients is generated. This equation is solved using a hybrid numerical-analytical approach yielding an analytical buckling expression. Finite element results are generated to verify the accuracy of the buckling load predictions indicating very good correlation with the buckling equation results regardless of the random lamination applied.


Sign in / Sign up

Export Citation Format

Share Document