scholarly journals Multilevel symmetrized Toeplitz structures and spectral distribution results for the related matrix sequences

2021 ◽  
Vol 37 ◽  
pp. 370-386
Author(s):  
Paola Ferrari ◽  
Isabella Furci ◽  
Stefano Serra-Capizzano

In recent years,  motivated by computational purposes, the singular value and spectral features of the symmetrization of Toeplitz matrices generated by a Lebesgue integrable function have been studied. Indeed, under the assumptions that $f$ belongs to $L^1([-\pi,\pi])$ and it has real Fourier coefficients, the spectral and singular value distribution of the matrix-sequence $\{Y_nT_n[f]\}_n$ has been identified, where $n$ is the matrix size, $Y_n$ is the anti-identity matrix, and $T_n[f]$ is the Toeplitz matrix generated by $f$. In this note, the authors consider the multilevel Toeplitz matrix $T_{\bf n}[f]$ generated by $f\in L^1([-\pi,\pi]^k)$, $\bf n$ being a multi-index identifying the matrix-size, and they prove spectral and singular value distribution results for the matrix-sequence $\{Y_{\bf n}T_{\bf n}[f]\}_{\bf n}$ with $Y_{\bf n}$ being the corresponding tensorization of the anti-identity matrix.

Author(s):  
Sukran Uygun ◽  
Evans Owusu

In this paper, we bring into light the matrix representation of bi-periodic Jacobsthal sequence, which we shall call the bi-periodic Jacobsthal matrix sequence. We dene it as with initial conditions J0 = I identity matrix, . We obtained the nth general term of this new matrix sequence. By studying the properties of this new matrix sequence, the well-known Cassini or Simpson's formula was obtained. We then proceed to find its generating function as well as the Binet formula. Some new properties and two summation formulas for this new generalized matrix sequence were also given.


2015 ◽  
Vol 3 (1) ◽  
Author(s):  
A. Ohashi ◽  
T. Sogabe ◽  
T.S. Usuda

AbstractWe consider a k-tridiagonal ℓ-Toeplitz matrix as one of generalizations of a tridiagonal Toeplitz matrix. In the present paper, we provide a decomposition of the matrix under a certain condition. By the decomposition, the matrix is easily analyzed since one only needs to analyze the small matrix obtained from the decomposition. Using the decomposition, eigenpairs and arbitrary integer powers of the matrix are easily shown as applications.


2021 ◽  
Vol 9 (1) ◽  
pp. 103-111
Author(s):  
Maryam Shams Solary ◽  
Alexander Kovačec ◽  
Stefano Serra Capizzano

Abstract Let L be the infinite lower triangular Toeplitz matrix with first column (µ, a 1, a 2, ..., ap , a 1, ..., ap , ...) T and let D be the infinite diagonal matrix whose entries are 1, 2, 3, . . . Let A := L + D be the sum of these two matrices. Bünger and Rump have shown that if p = 2 and certain linear inequalities between the parameters µ, a 1, a 2, are satisfied, then the singular values of any finite left upper square submatrix of A can be bounded from below by an expression depending only on those parameters, but not on the matrix size. By extending parts of their reasoning, we show that a similar behaviour should be expected for arbitrary p and a much larger range of values for µ, a 1, ..., ap . It depends on the asymptotics in µ of the l 2-norm of certain sequences defined by linear recurrences, in which these parameters enter. We also consider the relevance of the results in a numerical analysis setting and moreover a few selected numerical experiments are presented in order to show that our bounds are accurate in practical computations.


Author(s):  
Mohsen Pourahmadi

Letfbe a nonnegative integrable function on[−π,π],Tn(f)the(n+1)×(n+1)Toeplitz matrix associated withfandλ1,nits smallest eigenvalue. It is shown that the convergence ofλ1,ntominf(0)can be exponentially fast even whenfdoes not satisfy the smoothness condition of Kac, Murdoch and Szegö (1953). Also a lower bound forλ1,ncorresponding to a large class of functions which do not satisfy this smoothness condition is provided.


Author(s):  
Paulo Manrique-Mirón

In this paper, we study the condition number of a random Toeplitz matrix. As a Toeplitz matrix is a diagonal constant matrix, its rows or columns cannot be stochastically independent. This situation does not permit us to use the classic strategies to analyze its minimum singular value when all the entries of a random matrix are stochastically independent. Using a circulant embedding as a decoupling technique, we break the stochastic dependence of the structure of the Toeplitz matrix and reduce the problem to analyze the extreme singular values of a random circulant matrix. A circulant matrix is, in fact, a particular case of a Toeplitz matrix, but with a more specific structure, where it is possible to obtain explicit formulas for its eigenvalues and also for its singular values. Among our results, we show the condition number of a non-symmetric random circulant matrix [Formula: see text] of dimension [Formula: see text] under the existence of the moment generating function of the random entries is [Formula: see text] with probability [Formula: see text] for any [Formula: see text], [Formula: see text]. Moreover, if the random entries only have the second moment, the condition number satisfies [Formula: see text] with probability [Formula: see text]. Also, we analyze the condition number of a random symmetric circulant matrix [Formula: see text]. For the condition number of a random (non-symmetric or symmetric) Toeplitz matrix [Formula: see text] we establish [Formula: see text], where [Formula: see text] is the minimum singular value of the matrix [Formula: see text]. The matrix [Formula: see text] is a random circulant matrix and [Formula: see text], where [Formula: see text] are deterministic matrices, [Formula: see text] indicates the conjugate transpose of [Formula: see text] and [Formula: see text] are random diagonal matrices. From random experiments, we conjecture that [Formula: see text] is well-conditioned if the moment generating function of the random entries of [Formula: see text] exists.


2019 ◽  
Vol 7 (1) ◽  
pp. 230-245
Author(s):  
Macarena Collao ◽  
Mario Salas ◽  
Ricardo L. Soto

Abstract The nonnegative inverse eigenvalue problem (NIEP) is the problem of finding conditions for the existence of an n × n entrywise nonnegative matrix A with prescribed spectrum Λ = {λ1, . . ., λn}. If the problem has a solution, we say that Λ is realizable and that A is a realizing matrix. In this paper we consider the NIEP for a Toeplitz realizing matrix A, and as far as we know, this is the first work which addresses the Toeplitz nonnegative realization of spectra. We show that nonnegative companion matrices are similar to nonnegative Toeplitz ones. We note that, as a consequence, a realizable list Λ= {λ1, . . ., λn} of complex numbers in the left-half plane, that is, with Re λi≤ 0, i = 2, . . ., n, is in particular realizable by a Toeplitz matrix. Moreover, we show how to construct symmetric nonnegative block Toeplitz matrices with prescribed spectrum and we explore the universal realizability of lists, which are realizable by this kind of matrices. We also propose a Matlab Toeplitz routine to compute a Toeplitz solution matrix.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 870
Author(s):  
Diego Caratelli ◽  
Paolo Emilio Ricci

We show that using Dunford-Taylor’s integral, a classical tool of functional analysis, it is possible to derive an expression for the inverse of a general non-singular complex-valued tridiagonal matrix. The special cases of Jacobi’s symmetric and Toeplitz (in particular symmetric Toeplitz) matrices are included. The proposed method does not require the knowledge of the matrix eigenvalues and relies only on the relevant invariants which are determined, in a computationally effective way, by means of a dedicated recursive procedure. The considered technique has been validated through several test cases with the aid of the computer algebra program Mathematica©.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jorge Luis Arroyo Neri ◽  
Armando Sánchez-Nungaray ◽  
Mauricio Hernández Marroquin ◽  
Raquiel R. López-Martínez

We introduce the so-called extended Lagrangian symbols, and we prove that the C ∗ -algebra generated by Toeplitz operators with these kind of symbols acting on the homogeneously poly-Fock space of the complex space ℂ n is isomorphic and isometric to the C ∗ -algebra of matrix-valued functions on a certain compactification of ℝ n obtained by adding a sphere at the infinity; moreover, the matrix values at the infinity points are equal to some scalar multiples of the identity matrix.


1970 ◽  
Vol 22 (1) ◽  
pp. 86-91 ◽  
Author(s):  
Badri N. Sahney

1. Our aim in this paper is to determine a necessary and sufficient condition for N∅rlund summability of Fourier series and to include a wider class of classical results. A Fourier series, of a Lebesgue-integrable function, is said to be summable at a point by N∅rlund method (N, pn), as defined by Hardy [1], if pn → Σpn → ∞, and the point is in a certain subset of the Lebesgue set. The following main results are known.


Sign in / Sign up

Export Citation Format

Share Document