scholarly journals Ramanujan Summation for Powers of Triangular and Pronic Numbers

2020 ◽  
Vol 5 (1-2) ◽  
pp. 05-08
Author(s):  
Dr. R. Sivaraman

The numbers which are sum of first n natural numbers are called Triangular numbers and numbers which are product of two consecutive positive integers are called Pronic numbers. The concept of Ramanujan summation has been dealt by Srinivasa Ramanujan for divergent series of real numbers. In this paper, I will determine the Ramanujan summation for positive integral powers of triangular and Pronic numbers and derive a new compact formula for general case.

1982 ◽  
Vol 34 (4) ◽  
pp. 916-920
Author(s):  
Elgin H. Johnston

Let Σak be an infinite series of real numbers and let π be a permutation of N, the set of positive integers. The series Σaπ(k) is then called a rearrangement of Σak. A classical theorem of Riemann states that if Σak is a conditionally convergent series and s is any fixed real number (or ± ∞), then there is a permuation π such that Σaπ(k) = s. The problem of determining those permutations that convert any conditionally convergent series into a convergent rearrangement (such permuations are called convergence preserving) has received wide attention (see, for example [6]). Of special interest is a paper by P. A. B. Pleasants [5] in which is shown that the set of convergence preserving permutations do not form a group.In this paper we consider questions similar to those above, but for rearrangements of divergent series of positive terms. We establish some notation before stating the precise problem.


2020 ◽  
Vol 102 (1) ◽  
pp. 39-49
Author(s):  
ZHI-HONG SUN

Let $\mathbb{Z}$ and $\mathbb{Z}^{+}$ be the set of integers and the set of positive integers, respectively. For $a,b,c,d,n\in \mathbb{Z}^{+}$, let $t(a,b,c,d;n)$ be the number of representations of $n$ by $\frac{1}{2}ax(x+1)+\frac{1}{2}by(y+1)+\frac{1}{2}cz(z+1)+\frac{1}{2}dw(w+1)$ with $x,y,z,w\in \mathbb{Z}$. Using theta function identities we prove 13 transformation formulas for $t(a,b,c,d;n)$ and evaluate $t(2,3,3,8;n)$, $t(1,1,6,24;n)$ and $t(1,1,6,8;n)$.


1966 ◽  
Vol 62 (4) ◽  
pp. 637-642 ◽  
Author(s):  
T. W. Cusick

For a real number λ, ‖λ‖ is the absolute value of the difference between λ and the nearest integer. Let X represent the m-tuple (x1, x2, … xm) and letbe any n linear forms in m variables, where the Θij are real numbers. The following is a classical result of Khintchine (1):For all pairs of positive integers m, n there is a positive constant Г(m, n) with the property that for any forms Lj(X) there exist real numbers α1, α2, …, αn such thatfor all integers x1, x2, …, xm not all zero.


2009 ◽  
Vol 51 (2) ◽  
pp. 243-252
Author(s):  
ARTŪRAS DUBICKAS

AbstractLetx0<x1<x2< ⋅⋅⋅ be an increasing sequence of positive integers given by the formulaxn=⌊βxn−1+ γ⌋ forn=1, 2, 3, . . ., where β > 1 and γ are real numbers andx0is a positive integer. We describe the conditions on integersbd, . . .,b0, not all zero, and on a real number β > 1 under which the sequence of integerswn=bdxn+d+ ⋅⋅⋅ +b0xn,n=0, 1, 2, . . ., is bounded by a constant independent ofn. The conditions under which this sequence can be ultimately periodic are also described. Finally, we prove a lower bound on the complexity function of the sequenceqxn+1−pxn∈ {0, 1, . . .,q−1},n=0, 1, 2, . . ., wherex0is a positive integer,p>q> 1 are coprime integers andxn=⌈pxn−1/q⌉ forn=1, 2, 3, . . . A similar speculative result concerning the complexity of the sequence of alternatives (F:x↦x/2 orS:x↦(3x+1)/2) in the 3x+1 problem is also given.


2021 ◽  
Vol 14 (2) ◽  
pp. 380-395
Author(s):  
Jiramate Punpim ◽  
Somphong Jitman

Triangular numbers have been of interest and continuously studied due to their beautiful representations, nice properties, and various links with other figurate numbers. For positive integers n and l, the nth l-isosceles triangular number is a generalization of triangular numbers defined to be the arithmetic sum of the formT(n, l) = 1 + (1 + l) + (1 + 2l) + · · · + (1 + (n − 1)l).In this paper, we focus on characterizations and identities for isosceles triangular numbers as well as their links with other figurate numbers. Recursive formulas for constructions of isosceles triangular numbers are given together with necessary and sufficient conditions for a positive integer to be a sum of isosceles triangular  numbers. Various identities for isosceles triangular numbers are established. Results on triangular numbers can be viewed as a special case.


Author(s):  
Susan D'Agostino

“Proceed with care, because some infinities are larger than others” explains in detail why the infinite set of real numbers—all of the numbers on the number line—represents a far larger infinity than the infinite set of natural numbers—the counting numbers. Readers learn to distinguish between countable infinity and uncountable infinity by way of a method known as a “one-to-one correspondence.” Mathematics students and enthusiasts are encouraged to proceed with care in both mathematics and life, lest they confuse countable infinity with uncountable infinity, large with unfathomably large, or order with disorder. At the chapter’s end, readers may check their understanding by working on a problem. A solution is provided.


1982 ◽  
Vol 31 (1-2) ◽  
pp. 1-11
Author(s):  
Kamal C. Chanda

Let X k: n be the kth order statistic (1 ⩽ k ⩽ n) for a random sample of size n from a population with the distribution function F. Let {α n}, { βn} ( βn > 0) be sequences of real numbers and let { kn} ( kn ⩽ n) be a sequence of positive integers. The present article explores the various choices of α n, βn and kn such that under some mild regularity conditions on F, L( Yn) → n (0,1) as n→∞, where Yn = ( Xkn:n + α n)⁄ βn. It is further shown that under some additional conditions on F, standard asymptotic expansion (in Edgeworth form) for the distribution of Yn can be derived.


1998 ◽  
Vol 4 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Wilfrid Hodges

§1. Introduction. I dedicate this essay to the two-dozen-odd people whose refutations of Cantor's diagonal argument (I mean the one proving that the set of real numbers and the set of natural numbers have different cardinalities) have come to me either as referee or as editor in the last twenty years or so. Sadly these submissions were all quite unpublishable; I sent them back with what I hope were helpful comments. A few years ago it occurred to me to wonder why so many people devote so much energy to refuting this harmless little argument—what had it done to make them angry with it? So I started to keep notes of these papers, in the hope that some pattern would emerge.These pages report the results. They might be useful for editors faced with similar problem papers, or even for the authors of the papers themselves. But the main message to reach me is that there are several points of basic elementary logic that we usually teach and explain very badly, or not at all.In 1995 an engineer named William Dilworth, who had published a refutation of Cantor's argument in the Transactions of the Wisconsin Academy of Sciences, Arts and Letters, sued for libel a mathematician named Underwood Dudley who had called him a crank ([9] pp. 44f, 354).


1989 ◽  
Vol 54 (3) ◽  
pp. 1018-1022 ◽  
Author(s):  
Peter Perkins

A computable groupoid is an algebra ‹N, g› where N is the set of natural numbers and g is a recursive (total) binary operation on N. A set L of natural numbers is a computable list of computable groupoids iff L is recursive, ‹N, ϕe› is a computable groupoid for each e ∈ L, and e ∈ L whenever e codes a primitive recursive description of a binary operation on N.Theorem 1. Let L be any computable list of computable groupoids. The set {e ∈ L: the equational theory of ‹N, ϕe› is finitely axiomatizable} is not recursive.Theorem 2. Let S be any recursive set of positive integers. A computable groupoid GS can be constructed so that S is inifinite iff GS has a finitely axiomatizable equational theory.The problem of deciding which finite algebras have finitely axiomatizable equational theories has remained open since it was first posed by Tarski in the early 1960's. Indeed, it is still not known whether the set of such finite algebras is recursively (or corecursively) enumerable. McKenzie [7] has shown that this question of finite axiomatizability for any (finite) algebra of finite type can be reduced to that for a (finite) groupoid.


Sign in / Sign up

Export Citation Format

Share Document