PROOF WITHOUT WORDS: RELATIONSHIP BETWEEN THE SUM OF TRIANGULAR NUMBERS, SUM OF NATURAL NUMBERS, AND SUM OF SQUARE NUMBERS

2021 ◽  
Vol 21 (1) ◽  
pp. 83-91
Author(s):  
Yukio Kobayashi
2020 ◽  
Vol 5 (1-2) ◽  
pp. 05-08
Author(s):  
Dr. R. Sivaraman

The numbers which are sum of first n natural numbers are called Triangular numbers and numbers which are product of two consecutive positive integers are called Pronic numbers. The concept of Ramanujan summation has been dealt by Srinivasa Ramanujan for divergent series of real numbers. In this paper, I will determine the Ramanujan summation for positive integral powers of triangular and Pronic numbers and derive a new compact formula for general case.


In examining the properties of the triangular numbers 0, 1, 3, 6, 10, &c., the author observed that every triangular number was com­posed of four triangular numbers, viz. three times a triangular num­ber plus the one above it or below it; and he found that all the natural numbers in the interval between any two consecutive triangular numbers might be composed of four triangular numbers having the sum of their roots, or rather of the indices of their distances from the first term of the series constant, viz. the sum of the indices of the four triangular numbers which compose the first triangular number of the two .


Author(s):  
N. A. Balonin ◽  
M. B. Sergeev ◽  
J. Seberry ◽  
O. I. Sinitsyna

Introduction: The Hadamard conjecture about the existence of Hadamard matrices in all orders multiple of 4, and the Gauss problem about the number of points in a circle are among the most important turning points in the development of mathematics. They both stimulated the development of scientific schools around the world with an immense amount of works. There are substantiations that these scientific problems are deeply connected. The number of Gaussian points (Z3 lattice points) on a spheroid, cone, paraboloid or parabola, along with their location, determines the number and types of Hadamard matrices.Purpose: Specification of the upper and lower bounds for the number of Gaussian points (with odd coordinates) on a spheroid depending on the problem size, in order to specify the Gauss theorem (about the solvability of quadratic problems in triangular numbers by projections onto the Liouville plane) with estimates for the case of Hadamard matrices. Methods: The authors, in addition to their previous ideas about proving the Hadamard conjecture on the base of a one-to-one correspondence between orthogonal matrices and Gaussian points, propose one more way, using the properties of generalized circles on Z3 .Results: It is proved that for a spheroid, the lower bound of all Gaussian points with odd coordinates is equal to the equator radius R, the upper limit of the points located above the equator is equal to the length of this equator L=2πR, and the total number of points is limited to 2L. Due to the spheroid symmetry in the sector with positive coordinates (octant), this gives the values of R/8 and L/4. Thus, the number of Gaussian points with odd coordinates does not exceed the border perimeter and is no less than the relative share of the sector in the total volume of the figure.Practical significance: Hadamard matrices associated with lattice points have a direct practical significance for noise-resistant coding, compression and masking of video information.


Author(s):  
Tyron Goldschmidt

This chapter considers Plantinga’s argument from numbers for the existence of God. Plantinga sees divine psychologism as having advantages over both human psychologism and Platonism. The chapter begins with Plantinga’s description of the argument, including the relation of numbers to any divine attribute. It then argues that human psychologism can be ruled out completely. However, what rules it out might rule out divine psychologism too. It also argues that the main problem with Platonism might also be a problem with divine psychologism. However, it will, at the least, be less of a problem. In any case, there are alternative, possibly viable views about the nature of numbers that have not been touched by Plantinga’s argument. In addition, the chapter touches on the argument from properties, and its relation to the argument from numbers.


Author(s):  
Øystein Linnebo

How are the natural numbers individuated? That is, what is our most basic way of singling out a natural number for reference in language or in thought? According to Frege and many of his followers, the natural numbers are cardinal numbers, individuated by the cardinalities of the collections that they number. Another answer regards the natural numbers as ordinal numbers, individuated by their positions in the natural number sequence. Some reasons to favor the second answer are presented. This answer is therefore developed in more detail, involving a form of abstraction on numerals. Based on this answer, a justification for the axioms of Dedekind–Peano arithmetic is developed.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 474 ◽  
Author(s):  
Lazaros Moysis ◽  
Christos Volos ◽  
Sajad Jafari ◽  
Jesus M. Munoz-Pacheco ◽  
Jacques Kengne ◽  
...  

A modification of the classic logistic map is proposed, using fuzzy triangular numbers. The resulting map is analysed through its Lyapunov exponent (LE) and bifurcation diagrams. It shows higher complexity compared to the classic logistic map and showcases phenomena, like antimonotonicity and crisis. The map is then applied to the problem of pseudo random bit generation, using a simple rule to generate the bit sequence. The resulting random bit generator (RBG) successfully passes the National Institute of Standards and Technology (NIST) statistical tests, and it is then successfully applied to the problem of image encryption.


2021 ◽  
Vol 31 (1) ◽  
pp. 51-60
Author(s):  
Arsen L. Yakymiv

Abstract Dedicated to the memory of Alexander Ivanovich Pavlov. We consider the set of n-permutations with cycle lengths belonging to some fixed set A of natural numbers (so-called A-permutations). Let random permutation τ n be uniformly distributed on this set. For some class of sets A we find the asymptotics with remainder term for moments of total cycle number of τ n .


Sign in / Sign up

Export Citation Format

Share Document