scholarly journals Eye-lens weight curve for estimation of age in the Japanese grass vole, Microtus montebelli Milne-Edwards (Rodentia: Muridae)

2009 ◽  
Vol 44 (4) ◽  
pp. 501-504
Author(s):  
Tatsuo Yabe ◽  
Osamu Arakawa
Keyword(s):  
Eye Lens ◽  
Mammal Study ◽  
2002 ◽  
Vol 27 (1) ◽  
pp. 87-89
Author(s):  
Poorna D. D. Shrestha ◽  
Tatsuo Yabe ◽  
Tyuzi Kusano

1980 ◽  
Vol 61 (3) ◽  
pp. 561-563 ◽  
Author(s):  
R. E. Thomas ◽  
E. D. Bellis

Author(s):  
Camillo Peracchia ◽  
Stephen J. Girsch

The fiber cells of eye lens communicate directly with each other by exchanging ions, dyes and metabolites. In most tissues this type of communication (cell coupling) is mediated by gap junctions. In the lens, the fiber cells are extensively interconnected by junctions. However, lens junctions, although morphologically similar to gap junctions, differ from them in a number of structural, biochemical and immunological features. Like gap junctions, lens junctions are regions of close cell-to-cell apposition. Unlike gap junctions, however, the extracellular gap is apparently absent in lens junctions, such that their thickness is approximately 2 nm smaller than that of typical gap junctions (Fig. 1,c). In freeze-fracture replicas, the particles of control lens junctions are more loosely packed than those of typical gap junctions (Fig. 1,a) and crystallize, when exposed to uncoupling agents such as Ca++, or H+, into pseudo-hexagonal, rhombic (Fig. 1,b) and orthogonal arrays with a particle-to-particle spacing of 6.5 nm. Because of these differences, questions have been raised about the interpretation of the lens junctions as communicating junctions, in spite of the fact that they are the only junctions interlinking lens fiber cells.


Author(s):  
E.L. Benedetti ◽  
I. Dunia ◽  
Do Ngoc Lien ◽  
O. Vallon ◽  
D. Louvard ◽  
...  

In the eye lens emerging molecular and structural patterns apparently cohabit with the remnants of the past. The lens in a rather puzzling fashion sums up its own natural history and even transient steps of the differentiation are memorized. A prototype of this situation is well outlined by the study of the lenticular intercellular junctions. These membrane domains exhibit structural, biochemical and perhaps functional polymorphism reflecting throughout life the multiple steps of the differentiation of the epithelium into fibers and of the ageing process of the lenticular cells.The most striking biochemical difference between the membrane derived from the epithelium and from the fibers respectively, concerns the presence of the 26,000 molecular weight polypeptide (MP26) in the latter membranes.


2021 ◽  
Vol 657 ◽  
pp. 161-172
Author(s):  
JL Vecchio ◽  
JL Ostroff ◽  
EB Peebles

An understanding of lifetime trophic changes and ontogenetic habitat shifts is essential to the preservation of marine fish species. We used carbon and nitrogen stable isotope values (δ13C and δ15N) recorded within the laminar structure of fish eye lenses, reflecting both diet and location over time, to compare the lifetime trends of 2 demersal mesopredators. Tilefish Lopholatilus chamaeleonticeps inhabit burrows on the outer continental shelf, which results in exceptional site fidelity. Red grouper Epinephelus morio are spawned on the middle to outer continental shelf, move to the inner shelf for the juvenile period, and return offshore upon sexual maturity. Both species inhabit the eastern Gulf of Mexico, a region with a distinctive offshore-inshore gradient in background δ13C values. Within individual tilefish (n = 36), sequences of δ13C values and δ15N values had strong, positive correlations with eye-lens diameter, and strong correlations between the 2 isotopes (mean Spearman r = 0.86), reflecting an increase in trophic position with growth and little lifetime movement. In red grouper (n = 30), δ15N values positively correlated with eye-lens diameter, but correlations between δ15N and δ13C were weak (mean Spearman r = 0.29), suggesting cross-shelf ontogenetic movements. Linear mixed model results indicated strong relationships between δ15N and δ13C values in tilefish eye lenses but no convergence in the red grouper model. Collectively, these results are consistent with previously established differences in the life histories of the 2 species, demonstrating the potential utility of eye-lens isotope records, particularly for investigating the life histories of lesser-known species.


2003 ◽  
Vol 77 (5) ◽  
pp. 535 ◽  
Author(s):  
Gabriela Viteri ◽  
Ana Maria Edwards ◽  
Julio De la Fuente ◽  
Eduardo Silva
Keyword(s):  

2008 ◽  
Vol 2 (1) ◽  
pp. 58-65
Author(s):  
Elvira Bormusov ◽  
Naomi Amir-Sharon ◽  
Anat Eliaz-Volkovich ◽  
Ahuva Dovrat
Keyword(s):  

2021 ◽  
Vol 193 (1) ◽  
pp. 43-54
Author(s):  
Yasuda Mitsuyoshi ◽  
Funada Tomoya ◽  
Sato Hisaya ◽  
Kato Kyoichi

Abstract As chest x rays involve risks of patients falling, radiologic technologists (technologists) commonly assist patients, and as the assistance takes place near the patients, the eye lenses of the technologists are exposed to radiation. The recommendations of the International Commission on Radiological Protection suggest that the risk of developing cataracts due to lens exposure is high, and this makes it necessary to reduce and minimize the exposure. The present study investigated the positions of technologists assisting patients that will minimize exposure of the eye lens to radiation. The results showed that it is possible to reduce the exposure by assisting from the following positions: 50% at the sides rather than diagonally behind, 10% at the right side of the patient rather than the left and 40% at 250 mm away from the patient. The maximum reduction with radiation protection glasses was 54% with 0.07 mmPb and 72% with 0.88 mmPb.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2776
Author(s):  
Kang Hyeok Choi ◽  
Changjae Kim

The fish-eye lens camera has a wide field of view that makes it effective for various applications and sensor systems. However, it incurs strong geometric distortion in the image due to compressive recording of the outer part of the image. Such distortion must be interpreted accurately through a self-calibration procedure. This paper proposes a new type of test-bed (the AV-type test-bed) that can effect a balanced distribution of image points and a low level of correlation between orientation parameters. The effectiveness of the proposed test-bed in the process of camera self-calibration was verified through the analysis of experimental results from both a simulation and real datasets. In the simulation experiments, the self-calibration procedures were performed using the proposed test-bed, four different projection models, and five different datasets. For all of the cases, the Root Mean Square residuals (RMS-residuals) of the experiments were lower than one-half pixel. The real experiments, meanwhile, were carried out using two different cameras and five different datasets. These results showed high levels of calibration accuracy (i.e., lower than the minimum value of RMS-residuals: 0.39 pixels). Based on the above analyses, we were able to verify the effectiveness of the proposed AV-type test-bed in the process of camera self-calibration.


Sign in / Sign up

Export Citation Format

Share Document