Drainage Water Quality Response to Liquid Manure Application

2005 ◽  
Author(s):  
Larry D. Geohring ◽  
Susie Lee ◽  
Peter E. Wright ◽  
T. S. Steenhuis ◽  
M. F. Walter
2005 ◽  
Author(s):  
Glenn W. Stratton ◽  
Robert J. Gordon ◽  
Ali Madani ◽  
Arumugam Thiagarajan ◽  
Carla Shaw

2017 ◽  
Vol 16 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Xiaoyong Qian ◽  
Genxiang Shen ◽  
Zhenqi Wang ◽  
Xinliang Zhang ◽  
Zuxi Hong

2011 ◽  
Vol 21 (2) ◽  
pp. 176-180 ◽  
Author(s):  
P. Chris Wilson ◽  
Joseph P. Albano

Nitrate-nitrogen (N) losses in surface drainage and runoff water from ornamental plant production areas can be considerable. In N-limited watersheds, discharge of N from production areas can have negative impacts on nontarget aquatic systems. This study monitored nitrate-N concentrations in production area drainage water originating from a foliage plant production area. Concentrations in drainage water were monitored during the transition from 100% reliance on fertigation using urea and nitrate-based soluble formulations (SF) to a nitrate-based controlled-release formulation (CRF). During the SF use period, nitrate-N concentrations ranged from 0.5 to 322.0 mg·L−1 with a median concentration of 31.2 mg·L−1. Conversely, nitrate-N concentrations during the controlled-release fertilization program ranged from 0 to 147.9 mg·L−1 with a median concentration of 0.9 mg·L−1. This project demonstrates that nitrate-N concentrations in drainage water during the CRF program were reduced by 94% to 97% at the 10th through 95th percentiles relative to the SF fertilization program. Nitrate-N concentrations in drainage water from foliage plant production areas can be reduced by using CRF fertilizer formulations relative to SF formulations/fertigation. Similar results should be expected for other similar containerized crops. Managers located within N-limited watersheds facing N water quality regulations should consider the use of CRF fertilizer formulations as a potential tool (in addition to appropriate application rates and irrigation management) for reducing production impacts on water quality.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 308
Author(s):  
Kristen Almen ◽  
Xinhua Jia ◽  
Thomas DeSutter ◽  
Thomas Scherer ◽  
Minglian Lin

The potential impact of controlled drainage (CD), which limits drainage outflow, and subirrigation (SI), which provides supplemental water through drain tile, on surface water quality are not well known in the Red River Valley (RRV). In this study, water samples were collected and analyzed for chemical concentrations from a tile-drained field that also has controlled drainage and subirrigation modes in the RRV of southeastern North Dakota from 2012–2018. A decreasing trend in overall nutrient load loss was observed because of reduced drainage outflow, though some chemical concentrations were found to be above the recommended surface water quality standards in this region. For example, sulfate was recommended to be below 750 mg/L but was reported at a mean value of 1971 mg/L during spring free drainage. The chemical composition of the subirrigation water was shown to have an impact on drainage water and the soil, specifically on salinity-related parameters, and the impact varied between years. This variation largely depended on the amount of subirrigation applied, soil moisture, and soil properties. Overall, the results of this study show the benefits of controlled drainage on nutrient loss reduction from agricultural fields.


1996 ◽  
Vol 76 (2) ◽  
pp. 153-164 ◽  
Author(s):  
B. J. Zebarth ◽  
J. W. Paul ◽  
O. Schmidt ◽  
R. McDougall

Manure-N availability must be known in order to design application practices that maximize the nutrient value of the manure while minimizing adverse environmental impacts. This study determined the effect of time and rate of liquid manure application on silage corn yield and N utilization, and residual soil nitrate at harvest, in south coastal British Columbia. Liquid dairy or liquid hog manure was applied at target rates of 0, 175, 350 or 525 kg N ha−1, with or without addition of 100 kg N ha−1 as inorganic fertilizer, at two sites in each of 2 yr. Time of liquid-dairy-manure application was also tested at two sites in each of 2 yr with N-application treatments of: 600 kg N ha−1 as manure applied in spring; 600 kg N ha−1 as manure applied in fall; 300 kg N ha−1 as manure applied in each of spring and fall; 200 kg N ha−1 applied as inorganic fertilizer in spring; 300 kg N ha−1 as manure plus 100 kg N ha−1 as inorganic fertilizer applied in spring; and a control that received no applied N. Fall-applied manure did not increase corn yield or N uptake in the following growing season. At all sites, maximum yield was attained using manure only. Selection of proper spring application rates for manure and inorganic fertilizer were found to be equally important in minimizing residual soil nitrate at harvest. Apparent recovery of applied N in the crop ranged from 0 to 33% for manure and from 18 to 93% for inorganic fertilizer. Key words: N recovery, manure management


Sign in / Sign up

Export Citation Format

Share Document