A New Processing Machine to Increase Digestible Grain Rate for Whole Crop Rice Silage

2005 ◽  
Author(s):  
Kazuto Shigeta ◽  
Tamaki Kida ◽  
Morinobu Matsuo
Author(s):  
George C. Ruben ◽  
Merrill W. Shafer

Traditionally ceramics have been shaped from powders and densified at temperatures close to their liquid point. New processing methods using various types of sols, gels, and organometallic precursors at low temperature which enable densificatlon at elevated temperatures well below their liquidus, hold the promise of producing ceramics and glasses of controlled and reproducible properties that are highly reliable for electronic, structural, space or medical applications. Ultrastructure processing of silicon alkoxides in acid medium and mixtures of Ludox HS-40 (120Å spheres from DuPont) and Kasil (38% K2O &62% SiO2) in basic medium have been aimed at producing materials with a range of well defined pore sizes (∼20-400Å) to study physical phenomena and materials behavior in well characterized confined geometries. We have studied Pt/C surface replicas of some of these porous sol-gels prepared at temperatures below their glass transition point.


ROBOT ◽  
2010 ◽  
Vol 32 (1) ◽  
pp. 13-17 ◽  
Author(s):  
Qiang WU ◽  
Chunying JIANG ◽  
Yuan SUN

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2958
Author(s):  
Antonio Carlos Cob-Parro ◽  
Cristina Losada-Gutiérrez ◽  
Marta Marrón-Romera ◽  
Alfredo Gardel-Vicente ◽  
Ignacio Bravo-Muñoz

New processing methods based on artificial intelligence (AI) and deep learning are replacing traditional computer vision algorithms. The more advanced systems can process huge amounts of data in large computing facilities. In contrast, this paper presents a smart video surveillance system executing AI algorithms in low power consumption embedded devices. The computer vision algorithm, typical for surveillance applications, aims to detect, count and track people’s movements in the area. This application requires a distributed smart camera system. The proposed AI application allows detecting people in the surveillance area using a MobileNet-SSD architecture. In addition, using a robust Kalman filter bank, the algorithm can keep track of people in the video also providing people counting information. The detection results are excellent considering the constraints imposed on the process. The selected architecture for the edge node is based on a UpSquared2 device that includes a vision processor unit (VPU) capable of accelerating the AI CNN inference. The results section provides information about the image processing time when multiple video cameras are connected to the same edge node, people detection precision and recall curves, and the energy consumption of the system. The discussion of results shows the usefulness of deploying this smart camera node throughout a distributed surveillance system.


2018 ◽  
Vol 38 (7) ◽  
pp. 667-674 ◽  
Author(s):  
Maximilian Drexler ◽  
Sandra Greiner ◽  
Matthias Lexow ◽  
Lydia Lanzl ◽  
Katrin Wudy ◽  
...  

Abstract For the derivation of part quality increasing process strategies, knowledge about interactions between sub-processes of selective laser melting (SLM) and resulting part properties is necessary. The SLM process consists of three major sub-processes: powder coating, exposure, and material consolidation. According to the interaction of sub-processes, resulting processing conditions during SLM determine the part properties by changing micro structural pore number and distribution. In addition to absolute temperatures, the time-dependency of the thermal fields also influences the porosity of molten parts. Present process strategies tend to decrease building time by acceleration of the subprocesses. Apart from prior investigated acceleration of the exposure, the powder coating step is focused. Within the paper, the authors analyze the basic interactions between different coating parameters and part properties. The authors estimate an interaction between coating speed and resulting part properties due to a force impact caused by the moved coating mechanism. Therefore, specimens produced with different coating speeds are analyzed with imaging technologies as well as mechanical tests. Based on the investigations, new processing strategies can be established considering the forces applied to the powder bed during the coating process, as well as the unique compaction behavior of current and future used powders.


Sign in / Sign up

Export Citation Format

Share Document