compaction behavior
Recently Published Documents


TOTAL DOCUMENTS

219
(FIVE YEARS 45)

H-INDEX

26
(FIVE YEARS 2)

Author(s):  
Andreas Gester ◽  
Guntram Wagner ◽  
Pascal Pöthig ◽  
Jean Pierre Bergmann ◽  
Marco Fritzsche

AbstractFor fulfilling the demand of durable yet lightweight electrical connections in transportation industries, ultrasonic metal welding (USMW) sees widespread use in these branches. As the ultrasound oscillations utilized in the welding procedure occur at a range of only a few micrometers at frequencies of 20–100 kHz for an overall duration of only 50–1500 ms, it is not possible to observe the compaction behavior with the bare eye. This paper focusses on investigating the oscillation behavior of the horn, the anvil, and the joining partners during the welding procedure by utilizing an array of synchronized laser vibrometers and performing welds with incrementing time stages. The oscillation data is correlated with temperature measurements in the welding zone as well as tensile testing results. Inter alia the formation of sidebands at the fundamental frequency as well as 2nd- and 3rd-order harmonics has been observed for the anvil, terminal, and wire front face when exceeding optimal weld time which would lead to maximum joint strength. Following the assumption of other research groups, the cause of these sidebands could be a change in relative motion of these components. As the terminal is slipping with increasing weld time, it could be assumed that the reason for the sidebands is low-frequency movement of the anvil, modulated onto the fundamental frequency, additionally indicating successful bonding of the stranded wire and the terminal. Furthermore, this slipping of the terminal on the anvil could lead to increased wear of the anvil knurls.


2021 ◽  
Vol 1 ◽  
pp. 113-115
Author(s):  
Uwe Düsterloh ◽  
Svetlana Lerche

Abstract. The conceptual plans for the final underground disposal of radioactive waste in rock salt formations are based on extensive backfilling with crushed salt of the residual cavities left after waste deposition. It is therefore of particular importance for the historical and prognostic analysis of the load-bearing behavior and impermeability of a final repository in rock salt to demonstrate that compaction of the crushed salt backfill, which progresses over time, is suitable to seal the breaches in the geological barrier created during the underground excavation of the cavity in the long term such that safe containment of the waste is ensured. Relevant investigations on the thermal-hydraulic-mechanical (THM) behavior of crushed salt revealed that the constitutive models for the description of crushed salt compaction, which have regularly been based on the evaluation of oedometer tests, are not suitable for a sufficiently realistic representation of the essentially three-dimensional stress-strain behavior of crushed salt depending on the external load in space and time. Evidence for the above statement lies in particular in the fact that even when standardized mixtures of crushed salt are used, a computational reanalysis of compaction tests using a standardized set of parameters has hitherto been unsuccessful when different loading scenarios were specified for these laboratory tests. This means that deformations and porosities measured in the context of one individual laboratory tests can currently only be reanalyzed in sufficient quantity, irrespective of the choice of constitutive model, if the model parameters are determined in relation to this test. As a result, it must be stated that, on the one hand, the compaction behavior of crushed salt in space and time is not yet definitively understood, while, on the other hand, to ensure reliable, robust and sufficiently realistic statements to be made on compaction behavior, and thus to prove the safe containment of radioactive waste in rock salt, the availability of extensive systematically and sufficiently validated constitutive models is indispensable. This presentation introduces a methodological approach for the systematic and structured development and validation of multiphysical constitutive models, an approach that has meanwhile been successfully tested many times. The practical application of this methodology will be presented here using the example of a constitutive model that takes into account the triaxial stress-strain behavior of crushed salt. The individual development and validation steps are documented for the crushed salt model, EXPO-COM, newly developed at the Chair for Waste Disposal Technologies and Geomechanics. Validation of the constitutive model is performed by means of a back-analysis of triaxial long-term crushed salt compaction tests as follows: Test TK-031 of the German Federal Institute for Geosciences and Natural Resources (Bundesanstalt für Geowissenschaften und Rohstoffe, BGR) for isotropic load conditions Tests V1 (dry), V2 (w=0.1 %), and V3 (wet) of the German Society for Plant and Reactor Safety (Gesellschaft für Anlagen- und Reaktorsicherheit gGmbH, GRS) for different stresses and temperature levels as well as humidity Test TUC_V2 of the Clausthal University of Technology (TUC) for isotropic and deviatoric stress conditions. The TUC_V2 test characterizes, in the context of the methodology for the structured development and validation of multiphysical constitutive models, an innovative test method geared towards constitutive model development, in which the loading boundary conditions specified in the test guarantee the isolated analysis of individual factors influencing compaction behavior (Fig. 1). A description of the tests and test techniques that are still required for the full development and validation of the EXPO-COM constitutive model planned as part of the KOMPASS II research project is given together with a description of methodological guidelines relating to requirements on reliability, functionality, practicability, and validity ranges of the EXPO-COM constitutive model (Fig. 2). As a result of the subsequently possible comparison of experimentally validated and not yet validated dependencies or process variables, a validation status is defined for the constitutive model EXPO-COM. This validation status shows which factors influencing the THM-coupled material behavior of crushed salt are currently sufficiently realistically taken into account, and which influencing factors cannot yet be validated by the constitutive model. The main objectives of the tests to be carried out as part of the KOMPASS II research project include: Continued validation based on the systematized database to be created in KOMPASS II. Testing of the constitutive model in the context of numerical analyses of the predictive quality and numerical stability of the constitutive model for in situ relevant stress boundary conditions, prediction times and material properties.


Author(s):  
Ozan C¸ elik ◽  
Tom Bussink ◽  
Danie¨l Peeters ◽  
Julie Teuwen ◽  
Clemens Dransfeld

2021 ◽  
Author(s):  
SARTHAK MAHAPATRA SARTHAK MAHAPATRA ◽  
JONATHAN BELNOUE ◽  
JAMES KRATZ ◽  
DMITRY S. IVANOV ◽  
STEPHEN R. HALLETT

One of the most widely used automated manufacturing processes for composite parts is automated fibre placement (AFP). The deposition process involves the simultaneous warming, lay-up and consolidation of prepreg consisting of multitude of process parameters. Currently, AFP process parameters that ensure part conformance are derived by expensive and time-consuming trial-and-error approaches. The aim of this study is to demonstrate how physics-based finite element simulations that can predict the as manufactured geometry of a preform deposited by AFP can help reduce some of the empiricism associated with current industry practices. Here we particularly focus on the consolidation behaviour of toughened prepregs during the deposition process. An isothermal roller compaction model with thermal properties derived from an independent simplified thermo-mechanical model of the AFP head is used. Additionally, a fully characterised viscoelastic material definition is used for the prepreg tape along with a hyperelastic material for the compaction roller to accurately represent the physical parts. Various lay-up speeds, heater powers and compaction forces are simulated. To reduce the empiricism present in the manufacturing process, the viability of incorporating the numerical models into existing statistical relationships between process parameters and manufactured geometry is examined.


2021 ◽  
Vol 36 (4) ◽  
pp. 423-434
Author(s):  
F. Schulte-Hubbert ◽  
D. Drummer ◽  
L. Hoffmann

Abstract The underlying process for the production of textile reinforced thermoplastics is the impregnation of dry textile reinforcements with a thermoplastic matrix. The process parameters such as temperature, time and pressure of the impregnation are mainly determined by the permeability of the reinforcement. This results from a complex interaction of hydrodynamic compaction and relaxation behavior caused by textile and process parameters. The foundation for the description and optimization of impregnation progresses is therefore the determination of the pressure-dependent permeability of fibre textiles. Previous experimental investigations have shown that the dynamic compaction behavior during the impregnation of fibre reinforcements with thermoplastics or thermosets can be successfully characterized. However, for most cases, an analytical representation has not been possible due to the complexity of the process. Although it may be possible to reproduce this behavior by numerical calculations, the results need to be confirmed by experiments. This paper lays the analytical foundation for building a scaled model system, based on the theory of similarity, to observe, measure, and evaluate the dynamic compaction behavior of textile reinforcements under controlled process conditions.


2021 ◽  
Vol 39 (3) ◽  
pp. 410-429
Author(s):  
Hany R. Ammar ◽  
Subbarayan Sivasankaran ◽  
Abdulaziz S. Alaboodi

Abstract In the present study, twenty seven [(Fe–35wt%Mn)100−x –Cu x ] alloy samples were processed using high-energy ball milling, followed by uniaxial compaction under different processing conditions. The compressibility behavior in terms of relative density (RD) was examined with milling time (MT: 1 h, 5.5 h, and 10 h), ball-to-powder mass ratio (BPMR: 5:1, 10:1, and 15:1), milling speed (MS: 100 rev/min, 200 rev/min, and 300 rev/min), compaction pressure (CP: 25–1,100 MPa), and alloy composition (Cu content [CC]: 0 wt%, 5 wt%, 10 wt%). Particle size analysis using X-ray diffraction (XRD) and high-resolution scanning electron microscopy (HRSEM) combined with energy-dispersive X-ray spectroscopy (EDS) were applied for microstructural characterization. The experiments were conducted based on the central composite design of response surface methodology (RSM), and the results for the compaction behavior were examined with the input parameters. Analysis of variance (ANOVA) test was applied to determine the most significant input parameters. The attained results revealed that increasing ball milling parameters (MT, MS, and BPMR) resulted in significant enhancements in the microstructural features, such as improved elemental dispersion and occurrence of refined particles with substantial decrease in the crystallite size. On the other hand, increasing the input parameters exhibited a detrimental influence on the compactibility and RD of the alloys. In addition, increasing the CC resulted in a substantial improvement in the compressibility and RD of the developed alloys. The recommended combination of the studied variables includes MT for 5 h, MS for 150 rev/min, BPMR of 10:1, and 10 wt%Cu to attain an acceptable compromise of enhanced microstructure features, improved compaction response, and RD.


2021 ◽  
Author(s):  
Abdulmuner Malikzada ◽  
Hasan Fırat Pulat ◽  
İnci Develioğlu

Low plasticity, high bearing capacity, low settlement, etc. are the preferred properties for most engineering projects. Alluvial soils are problematic soils because of low bearing capacity, high organic matter content, and high void ratio so they do not meet the preferred condition for engineering projects. It has been necessary to improve unsuitable materials to make them acceptable for construction. Fly ash (FA) has earlier been used for stabilizing roads due to its high content of calcium and silicate oxides which give puzzolanic properties and thus high compression strength. In this research, fundamental engineering properties, compaction behaviors of three types of (fine, medium, and coarse) alluvial deposits, and the effect of fly ash on compaction behavior of these alluvial soils are presented. Alluvial soil is taken from Çiğli, Balatçık (Izmir, Turkey). To determine geotechnical index properties; wet sieve analysis, plastic limit, liquid limit, specific gravity, standard compaction tests were conducted. In order to determine the effect of fly ash on compaction behavior of alluvial deposits, three different samples (fine < 0.425mm, medium < 2mm, and coarse < 4.75 mm) are prepared and 10%, 15%, 20% fly ash by dry weight of soil is mixed and standard proctor test is performed. As a result of laboratory tests, the liquid limit, plastic limit, and plasticity index values obtained as 38.3%, 25.7%, and 12.6%, respectively. The specific gravities for fine, medium, and coarse samples are 2.68, 2.67, and 2.66, respectively. According to the results of wet sieve analysis and consistency limit tests, it was stated that the soil contains large amounts of sand and clay. The washed sieve analysis and consistency limit tests results were evaluated according to USCS. The conducted test results have shown that maximum dry unit weight for fine, medium, and coarse soils are 16.9, 19.35, and 19.55 (kN/m3), and optimum moisture content for fine, medium, and coarse samples are 17, 11, 10.5% respectively. Generally, by increasing the content of FA, maximum dry unit weight decreased and optimum moisture content increased for all three types of alluvial soil. By increasing FA to 20%, maximum dry unit weight of medium and coarse soils decreases 1.5% and 2%, respectively.


2021 ◽  
Vol 27 (11) ◽  
pp. 58-66 ◽  
Author(s):  
Francesco Sillani ◽  
Dominik Wagner ◽  
Marvin Aaron Spurek ◽  
Lukas Haferkamp ◽  
Adriaan Bernardus Spierings ◽  
...  

Purpose Powder bed-based additive manufacturing (AM) is a promising family of technologies for industrial applications. The purpose of this study is to provide a new metrics based on the analysis of the compaction behavior for the evaluation of flowability of AM powders. Design/methodology/approach In this work, a novel qualification methodology based on a camera mounted onto a commercially available tap density meter allowed to assess the compaction behavior of a selection of AM materials, both polymers and metals. This methodology automatizes the reading of the powder height and obtains more information compared to ASTM B527. A novel property is introduced, the “tapping modulus,” which describes the packing speed of a powdered material and is related to a compression/vibration powder flow. Findings The compaction behavior was successfully correlated with the dynamic angle of repose for polymers, but interestingly not for metals, shedding more light to the different flow behavior of these materials. Research limitations/implications Because of the chosen materials, the results may lack generalizability. For example, the application of this methodology outside of AM would be interesting. Originality/value This paper suggests a new methodology for assessing the flowing behavior of AM materials when subjected to compression. The device is inexpensive and easy to implement in a quality assurance environment, being thus interesting for industrial applications.


Sign in / Sign up

Export Citation Format

Share Document