glass transition point
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 10)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Mirjam Schröder ◽  
Daniel Rauber ◽  
Clemens Matt ◽  
Christopher W. M. Kay

AbstractTesting and calibrating an experimental setup with standard samples is an essential aspect of scientific research. Single crystals of pentacene in p-terphenyl are widely used for this purpose in transient electron paramagnetic resonance (EPR) spectroscopy. However, this sample is not without downsides: the crystals need to be grown and the EPR transitions only appear at particular orientations of the crystal with respect to the external magnetic field. An alternative host for pentacene is the glass-forming 1,3,5-tri(1-naphtyl)benzene (TNB). Due to the high glass transition point of TNB, an amorphous glass containing randomly oriented pentacene molecules is obtained at room temperature. Here we demonstrate that pentacene dissolved in TNB gives a typical “powder-like” transient EPR spectrum of the triplet state following pulsed laser excitation. From the two-dimensional data set, it is straightforward to obtain the zero-field splitting parameters and relative populations by spectral simulation as well as the $$B_{1}$$ B 1 field in the microwave resonator. Due to the simplicity of preparation, handling and stability, this system is ideal for adjusting the laser beam with respect to the microwave resonator and for introducing students to transient EPR spectroscopy.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1779
Author(s):  
A. D. Drozdov ◽  
J. deClaville Christiansen

Observations are reported on poly(ether ether ketone) (PEEK) in uniaxial tensile tests, relaxation tests and creep tests with various stresses in a wide interval of temperatures ranging from room temperature to 180 °C. Constitutive equations are developed for the thermo–mechanical behavior of PEEK under uniaxial deformation. Adjustable parameters in the governing equations are found by matching the experimental data. Good agreement is demonstrated between the observations and results of numerical simulation. It is shown that the activation energies for the elastoplastic, viscoelastic and viscoelastoplastic responses adopt similar values at temperatures above the glass transition point.


BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3543-3562
Author(s):  
Bo Zhang ◽  
Wei Zhang ◽  
Yongcai Ma ◽  
Liqiang Qi ◽  
Jianfei Shi

A new method for producing biomass seedling trays with cow manure was developed based on heating to above the glass transition point of the lignin in cow dung. The maize seedling tray, manufactured through heat compression molding, could potentially meet the demand for transplanting maize seedlings. A scanning electron microscope and universal testing machine were used to compare the changes in the internal structure and mechanical properties of the seedling tray before and after the seeding period through a compression molding technique at normal temperature before seeding and a heat compression molding technique after seeding. The results showed that the strength of the seedling tray was mainly derived from the mechanical setting force of the fiber laminated in the seedling tray. Meanwhile, the moisture in the seedling tray hindered the lignin from filling in the gaps between the stem fibers in cow manure, as well as it reduced the protective effect of lignin on the laminated inlay structure of the stem fibers in cow manure. Therefore, under the premise that the material could be completely filled in the mold, the study concluded that a lower moisture content resulted in better strength and water resistance of the seedling tray. As such, this study provides an idea for the functional utilization of cow manure.


2021 ◽  
Vol 1020 ◽  
pp. 131-135
Author(s):  
Hiroya Nihon’yanagi ◽  
Takahiro Matsueda ◽  
Katsuyuki Kida ◽  
Yuji Kashima

In the present study, Rolling Contact Fatigue (RCF) tests of Poly-phenylene-sulfide (PPS) thrust bearings under dry condition were carried out and the relationship between fatigue life of bearings and temperature was studied. Furthermore, in order to investigate maximum temperature of PPS thrust bearings in service, in order to obtain the calibration data, the temperatures of rolling contact element and Infrared (IR) temperature on the side of top race were measured and correlated. It is concluded that the contact temperature of failure PPS bearing was higher than the glass transition point but lower than a melting point of PPS.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 669
Author(s):  
Federico Lucco Castello ◽  
Panagiotis Tolias

The mode coupling theory of supercooled liquids is combined with advanced closures to the integral equation theory of liquids in order to estimate the glass transition line of Yukawa one-component plasmas from the unscreened Coulomb limit up to the strong screening regime. The present predictions constitute a major improvement over the current literature predictions. The calculations confirm the validity of an existing analytical parameterization of the glass transition line. It is verified that the glass transition line is an approximate isomorphic curve and the value of the corresponding reduced excess entropy is estimated. Capitalizing on the isomorphic nature of the glass transition line, two structural vitrification indicators are identified that allow a rough estimate of the glass transition point only through simple curve metrics of the static properties of supercooled liquids. The vitrification indicators are demonstrated to be quasi-universal by an investigation of hard sphere and inverse power law supercooled liquids. The straightforward extension of the present results to bi-Yukawa systems is also discussed.


2021 ◽  
Vol 7 (3) ◽  
pp. eabd1958
Author(s):  
Zhongyu Zheng ◽  
Ran Ni ◽  
Yuren Wang ◽  
Yilong Han

Critical-like behaviors have been found in translational degrees of freedom near the glass transition of spherical particle systems mainly with local polycrystalline structures, but it is not clear if criticality exists in more general glassy systems composed of nonspherical particles without crystalline structures. Here, through experiments and simulations, we show critical-like behaviors in both translational and rotational degrees of freedom in monolayers of monodisperse colloidal ellipsoids in the absence of crystalline orders. We find rich features of the Ising-like criticality in structure and slow dynamics at the ideal glass transition point ϕ0, showing the thermodynamic nature of glass transition at ϕ0. A dynamic criticality is found at the mode-coupling critical point ϕc for the fast-moving clusters whose critical exponents increase linearly with fragility, reflecting a dynamic glass transition. These results cast light on the glass transition and explain the mystery that the dynamic correlation lengths diverge at two different temperatures.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 67
Author(s):  
Nikolai V. Priezjev

The effect of tensile stress applied during cooling of binary glasses on the potential energy states and mechanical properties is investigated using molecular dynamics simulations. We study the three-dimensional binary mixture that was first annealed near the glass transition temperature and then rapidly cooled under tension into the glass phase. It is found that at larger values of applied stress, the liquid glass former freezes under higher strain and its potential energy is enhanced. For a fixed cooling rate, the maximum tensile stress that can be applied during cooling is reduced upon increasing initial temperature above the glass transition point. We also show that the amorphous structure of rejuvenated glasses is characterized by an increase in the number of contacts between smaller type atoms. Furthermore, the results of tensile tests demonstrate that the elastic modulus and the peak value of the stress overshoot are reduced in glasses prepared at larger applied stresses and higher initial temperatures, thus indicating enhanced ductility. These findings might be useful for the development of processing and fabrication methods to improve plasticity of bulk metallic glasses.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 65
Author(s):  
Matthias Sebastian Windberger ◽  
Evgenia Dimitriou ◽  
Sarah Rendl ◽  
Karin Wewerka ◽  
Frank Wiesbrock

The pronouncedly low thermal conductivity of polymers in the range of 0.1–0.2 W m−1 K−1 is a limiting factor for their application as an insulating layer in microelectronics that exhibit continuously higher power-to-volume ratios. Two strategies can be applied to increase the thermal conductivity of polymers; that is, compounding with thermally conductive inorganic materials as well as blending with aromatic units arranged by the principle of π-π stacking. In this study, both strategies were investigated and compared on the example of epoxy-amine resins of bisphenol A diglycidyl ether (BADGE) and 1,2,7,8-diepoxyoctane (DEO), respectively. These two diepoxy compounds were cured with mixtures of the diamines isophorone diamine (IPDA) and o-dianisidine (DAN). The epoxy-amine resins were cured without filler and with 5 wt.-% of SiO2 nanoparticles. Enhanced thermal conductivity in the range of 0.4 W·m−1·K−1 was observed exclusively in DEO-based polymer networks that were cured with DAN (and do not contain SiO2 fillers). This observation is argued to originate from π-π stacking of the aromatic units of DAN enabled by the higher flexibility of the aliphatic carbon chain of DEO compared with that of BADGE. The enhanced thermal conductivity occurs only at temperatures above the glass-transition point and only if no inorganic fillers, which disrupt the π-π stacking of the aromatic groups, are present. In summary, it can be argued that the bisphenol-free epoxy-amine resin with an epoxy compound derivable from natural resources shows favorably higher thermal conductivity in comparison with the petrol-based bisphenol-based epoxy/amine resins.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 177 ◽  
Author(s):  
Aureliano Fertuzinhos ◽  
Marta A. Teixeira ◽  
Miguel Goncalves Ferreira ◽  
Rui Fernandes ◽  
Rossana Correia ◽  
...  

The aim of this study was to undergo a comprehensive analysis of the thermo-mechanical properties of nasal cartilages for the future design of a composite polymeric material to be used in human nose reconstruction surgery. A thermal and dynamic mechanical analysis (DMA) in tension and compression modes within the ranges 1 to 20 Hz and 30 °C to 250 °C was performed on human nasal cartilage. Differential scanning calorimetry (DSC), as well as characterization of the nasal septum (NS), upper lateral cartilages (ULC), and lower lateral cartilages (LLC) reveals the different nature of the binding water inside the studied specimens. Three peaks at 60–80 °C, 100–130 °C, and 200 °C were attributed to melting of the crystalline region of collagen matrix, water evaporation, and the strongly bound non-interstitial water in the cartilage and composite specimens, respectively. Thermogravimetric analysis (TGA) showed that the degradation of cartilage, composite, and subcutaneous tissue of the NS, ULC, and LLC take place in three thermal events (~37 °C, ~189 °C, and ~290 °C) showing that cartilage releases more water and more rapidly than the subcutaneous tissue. The water content of nasal cartilage was estimated to be 42 wt %. The results of the DMA analyses demonstrated that tensile mode is ruled by flow-independent behaviour produced by the time-dependent deformability of the solid cartilage matrix that is strongly frequency-dependent, showing an unstable crystalline region between 80–180 °C, an amorphous region at around 120 °C, and a clear glass transition point at 200 °C (780 kJ/mol). Instead, the unconfined compressive mode is clearly ruled by a flow-dependent process caused by the frictional force of the interstitial fluid that flows within the cartilage matrix resulting in higher stiffness (from 12 MPa at 1 Hz to 16 MPa at 20 Hz in storage modulus). The outcomes of this study will support the development of an artificial material to mimic the thermo-mechanical behaviour of the natural cartilage of the human nose.


2019 ◽  
Vol 5 (11) ◽  
pp. eaax7256 ◽  
Author(s):  
Jiang Ma ◽  
Can Yang ◽  
Xiaodi Liu ◽  
Baoshuang Shang ◽  
Quanfeng He ◽  
...  

Design of bulk metallic glasses (BMGs) with excellent properties has been a long-sought goal in materials science and engineering. The grand challenge has been scaling up the size and improving the properties of metallic glasses of technological importance. In this work, we demonstrate a facile, flexible route to synthesize BMGs and metallic glass-glass composites out of metallic-glass ribbons. By fully activating atomic-scale stress relaxation within an ultrathin surface layer under ultrasonic vibrations, we accelerate the formation of atomic bonding between ribbons at a temperature far below the glass transition point. In principle, our approach overcomes the size and compositional limitations facing traditional methods, leading to the rapid bonding of metallic glasses of distinct physical properties without causing crystallization. The outcome of our current research opens up a window not only to synthesize BMGs of extended compositions, but also toward the discovery of multifunctional glass-glass composites, which have never been reported before.


Sign in / Sign up

Export Citation Format

Share Document