Anaerobic Digestion and Related Best Management Practices: Utilizing Life Cycle Assessment

Author(s):  
Mark Z Venczel ◽  
Susan E Powers
HortScience ◽  
2017 ◽  
Vol 52 (3) ◽  
pp. 357-365 ◽  
Author(s):  
Dewayne L. Ingram ◽  
Charles R. Hall ◽  
Joshua Knight

Three scenarios for production of Buxus microphylla var. japonica [(Mull. Arg.) Rehder & E.H. Wilson] ‘Green Beauty’ marketed in a no. 3 container on the west coast of the United States were modeled based on grower interviews and best management practices. Life cycle inventories (LCIs) of input products, equipment use, and labor were developed from the protocols for those scenarios and a life cycle assessment (LCA) was conducted to determine impact of individual components on the greenhouse gas emissions (GHGs) and the subsequent carbon footprint (CF) of the product at the nursery gate and in the landscape. CF is expressed in global warming potential (GWP) for a 100-year period in units of kilograms of carbon dioxide equivalents (kg CO2e). The GWP of the plant from Scenario A (propagation to no. 1 to 3 container) was 2.198 kg CO2e with variable costs of $4.043. Scenario B (propagation to field to no. 3 container) would result in a GWP of 1.717 kg CO2e with variable costs of $2.880 and take a year longer in production than the other two models. The GWP of Scenario C (propagation to no. 1 to no. 2 to no. 3 containers) would be 3.364 kg CO2e with variable costs of $5.733. Containers, transplants/transplanting, irrigation, and fertilization input products and associated activities accounted for the greatest portion of GHG and variable costs in each scenario. Pruning, assembling/load trucks, pesticides, and chlorination were other important components to variable costs of each scenario but had little impact on GWP. Otherwise, the major contributors to GWP are also major contributors to cost.


HortScience ◽  
2018 ◽  
Vol 53 (4) ◽  
pp. 441-444 ◽  
Author(s):  
Dewayne L. Ingram ◽  
Charles R. Hall ◽  
Joshua Knight

Life cycle assessment (LCA) was used to analyze the global warming potential (GWP) and variable costs of production system components for an 11.4-cm container of wax begonia (Begonia ×semperflorens-cultorum Hort) modeled in a gutter-connected, Dutch-style greenhouse with natural ventilation in the northeastern United States. A life cycle inventory of the model system was developed based on grower interviews and published best management practices. In this model, the GWP of input products, equipment use, and environmental controls for an individual plant would be 0.140 kilograms of carbon dioxide equivalents (kg CO2e) and the variable costs would total $0.666. Fifty-seven percent of the GWP and 43% of the variable costs would be due to the container and the portion of a 12-plant shuttle tray assigned to a plant. Electricity for irrigation and general overhead would be only 13% of GWP and 2% of variable costs. Natural gas use for heating would be 0.01% of GWP and less of the variable costs, even at a northeastern U.S. location. This was because of the rapid crop turnover and only heated for 3 months of a 50-week production year. Life cycle GWP contributions through carbon sequestration of flowering annuals after being transplanted in the landscape would be minor compared with woody plants; however, others have documented numerous benefits that enhance the human environment.


HortScience ◽  
2019 ◽  
Vol 54 (2) ◽  
pp. 262-266 ◽  
Author(s):  
Dewayne L. Ingram ◽  
Charles R. Hall ◽  
Joshua Knight

A model production system for a 15.2-cm poinsettia (Euphorbia pulcherrima) in the north Atlantic region of the United States was developed through grower interviews and best management practices and analyzed using a life cycle assessment (LCA). The model system involved direct sticking of unrooted cuttings. The propagation phase was 4 weeks, followed by 9 weeks of irrigation using a boom system and 4 weeks of flood-floor irrigation. The carbon footprint, or global warming potential (GWP), for the plant was calculated as 0.474 kg carbon dioxide equivalent (kg CO2e), with a variable cost of $1.030. Major contributors to the GWP were the substrate and filling pots, fertilization, the container, irrigation, and overhead electricity. The major contributors to variable costs were the unrooted cuttings and labor to prepare and stick ($0.471). Furthermore, the substrate and filling containers and irrigation were notable contributors. Material inputs accounted for 0.304 kg CO2e, whereas equipment use was estimated to be 0.163 kg CO2e, which comprised 64.2% and 35.8% of total GWP, respectively. Material inputs accounted for $0.665 (64.6%) of variable costs, whereas labor accounted for 19.6% of variable costs for this model. Water use per plant was 77.2 L with boom irrigation for the 9 weeks during production spacing (32.8 plant/m2) and represented 64% of the total water use. LCA was an effective tool for analyzing the components of a model system of greenhouse-grown, flowering, potted plants. Information gained from this study can be used by growers considering system alterations to improve efficiency.


2006 ◽  
Vol 54 (6-7) ◽  
pp. 477-484 ◽  
Author(s):  
J.G. Lee ◽  
J.P. Heaney ◽  
D.N. Rapp ◽  
C.A. Pack

Highway runoff can cause a number of water quantity and quality problems. Stormwater management systems for highways have been developed based on a fast drainage for large storm situations. Non-point source pollution from highway runoff is a growing water quality concern. Stormwater quality control needs to be integrated into highway drainage design and operation to reduce the stormwater impacts on the receiving water. A continuous simulation/optimisation model for analysing integrated highway best management practices (BMPs) is presented. This model can evaluate the life cycle performance of infiltration and/or storage oriented highway BMPs. It can be directly integrated with spreadsheet optimisation tools to find the least cost options for implementing BMPs throughout a specified life cycle.


Sign in / Sign up

Export Citation Format

Share Document