carbon dioxide equivalents
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 5)

H-INDEX

4
(FIVE YEARS 2)

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7679
Author(s):  
Piotr Olczak ◽  
Agnieszka Żelazna ◽  
Dominika Matuszewska ◽  
Małgorzata Olek

One way to reduce CO2 emissions is to replace conventional energy sources with renewable ones. In order to encourage prosumers to invest in renewable energy, EU Member States are developing renewable energy subsidy programs. In Poland, in the years 2019–2020, the “My Electricity” program was implemented, co-financing was up to 50% of eligible costs (max PLN 5000, i.e., EUR 1111), and the total cost of the program was 251 million euro. During this period, around 400,000 prosumer installations were created in Poland, including over 220,000 prosumer PV Installations under the My Electricity program. The total power of the installation under the “My Electricity” program was 1.295 GWp with an average installation power of 5.72 kWp. It is estimated that the micro-installations will produce approx. 1.4 TWh of electricity annually. Depending on the replaced source of electricity (coal, gas, mix), in the next 30 years, it will help to avoid 26.2–42.7 million Mg of greenhouse gases calculated as carbon dioxide equivalents (CO2eq). The coefficient of subsidy expenditure from the “My Electricity” program was 194 EUR/kWp, and in the next 30 years, it will be 6.52 EUR/MWh. The investment in PV will save EUR 1550 million, which would have to be incurred for the purchase of CO2 emission permits.


Nutrients ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 2507
Author(s):  
Patricia Eustachio Colombo ◽  
Liselotte Schäfer Elinder ◽  
Anna Karin Lindroos ◽  
Alexandr Parlesak

Low-carbon diets can counteract climate change and promote health if they are nutritionally adequate, affordable and culturally acceptable. This study aimed at developing sustainable diets and to compare these with the EAT-Lancet diet. The Swedish national dietary survey Riksmaten Adolescents 2016–17 was used as the baseline. Diets were optimized using linear programming for four dietary patterns: omnivores, pescatarians, vegetarians and vegans. The deviation from the baseline Riksmaten diet was minimized for all optimized diets while fulfilling nutrient and climate footprint constraints. Constraining the diet-related carbon dioxide equivalents of omnivores to 1.57 kg/day resulted in a diet associated with a reduction of meat, dairy products, and processed foods and an increase in potatoes, pulses, eggs and seafood. Climate-friendly, nutritionally adequate diets for pescatarians, vegetarians and vegans contained fewer foods and included considerable amounts of fortified dairy and meat substitutes. The optimized diets did not align very well with the food-group pattern of the EAT-Lancet diet. These findings suggest how to design future diets that are climate-friendly, nutritionally adequate, affordable, and culturally acceptable for Swedish adolescents with different dietary patterns. The discrepancies with the EAT diet indicate that the cultural dietary context is likely to play an important role in characterizing sustainable diets for specific populations.


2020 ◽  
Author(s):  
Ashenafi Manaye ◽  
Selemawit Amaha ◽  
Yirga Gufi ◽  
Berihu Tesfamariam ◽  
Adefires Worku ◽  
...  

Abstract In Ethiopia, biomass is the main form of fuel approximately for 92% of the population. Currently, several strategies were designed to reduce fuelwood consumption and greenhouse gases (GHG) emission by implementing improved cooking stoves (ICS). Nevertheless, the adoption of ICSs has been very slow. Therefore, this study were conducted to assess the performance of ICS (“Mirt” and Tikikil”) on fuelwood consumption and greenhouse gas emission (GHG) in the kitchens of real households using kitchen performance test (KPT) methods. To select the study households (HH), both cross-sectional and longitudinal study designs were used. The study indicated that there were significant differences (p < 0.05) between the use of improved and traditional cooking stoves in total and per capita wood consumption. The use of “Mirt” and “Tikikil” than the traditional stove reduced the household wood consumption by 35 % (438 kg/ year) and 18% (185 kg/ year), respectively. Likewise, adopting of these ICS stoves lead to decrease of 0.65 and 0.27 tons of carbon dioxide equivalents (CO2 e) per stove per year. This finding may have implication on adoption of ICS technology is important on reducing CO2 emission, forest degradation and household workloads.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Therese Hjorth ◽  
Ena Huseinovic ◽  
Elinor Hallström ◽  
Anna Strid ◽  
Ingegerd Johansson ◽  
...  

AbstractThe objective was to examine 10-year changes in dietary carbon footprint relative to individual characteristics and food intake in the unique longitudinal Västerbotten Intervention Programme, Sweden. Here, 14 591 women and 13 347 men had been followed over time. Food intake was assessed via multiple two study visits 1996–2016, using a 64-item food frequency questionnaire. Greenhouse gas emissions (GHGE) related to food intake, expressed as kg carbon dioxide equivalents/1000 kcal and day, were estimated. Participants were classified into GHGE quintiles within sex and 10-year age group strata at both visits. Women and men changing from lowest to highest GHGE quintile exhibited highest body mass index within their quintiles at first visit, and the largest increase in intake of meat, minced meat, chicken, fish and butter and the largest decrease in intake of potatoes, rice and pasta. Women and men changing from highest to lowest GHGE quintile exhibited basically lowest rates of university degree and marriage and highest rates of smoking within their quintiles at first visit. Among these, both sexes reported the largest decrease in intake of meat, minced meat and milk, and the largest increase in intake of snacks and, for women, sweets. More research is needed on how to motivate dietary modifications to reduce climate impact and support public health.


2019 ◽  
Vol 11 (3) ◽  
pp. 734 ◽  
Author(s):  
Alexandra Lavers Westin ◽  
Yuliya Kalmykova ◽  
Leonardo Rosado

Decision makers are tasked with defining and implementing measures that can meet established environmental targets. However, it is not always clear how effective the measure(s) will be in meeting the specified goals and which measures should be prioritized for implementation. To fill this gap, we have developed a method for testing planned actions to estimate potential impact on targets. The method can be performed at any scale, e.g., at the national, regional, or city level. The approach considers several factors, including the total consumption of an area, region-specific consumption-based environmental hotspots, the decision makers, the reduction targets and related measures, as well as multiple impact types. We present the method using the example of the municipality Gothenburg, Sweden. In collaboration with local authorities in Gothenburg, we co-created scenarios that bundle proposed measures intended to make progress towards their climate target of 3.5 tons carbon dioxide equivalents per capita. We then quantified how measures related to two known environmental hotspots, fuel and electronics, may affect climate change impact levels by the target year of 2035. The scenarios indicate that despite targeting known high-impact product types in Gothenburg, the efforts lead to only 14% of the reduction needed to meet the specified goal.


2018 ◽  
Vol 10 (11) ◽  
pp. 4044 ◽  
Author(s):  
Bore Sköld ◽  
Marta Baltruszewicz ◽  
Carlo Aall ◽  
Camilla Andersson ◽  
Alina Herrmann ◽  
...  

This paper investigates households’ preferences to reduce their carbon footprint (CF) measured in carbon dioxide equivalents (CO2e). It assumes that a substantial CF reduction of households is essential to reach the 1.5 °C goal under the Paris Agreement. Data was collected in four mid-size cities in France, Germany, Norway, and Sweden. Quantitative data was obtained from 308 households using a CF calculator based on a questionnaire, and a simulation game. The latter investigated households’ preferences when being confronted with the objective to reduce their CF by 50 percent by 2030 in a voluntary and forced scenario. Our results show that the greater the CO2e-reduction potential of a mitigation action, the less willing a household was to implement that action. Households preferred actions with moderate lifestyle changes foremost in the food sector. Voluntarily, households reached a 25% footprint reduction by 2030. To reach a substantial reduction of 50 percent, households needed to choose actions that meant considerable lifestyle changes, mainly related to mobility. Given our results, the 1.5 °C goal is unlikely to be realizable currently, unless households receive major policy support. Lastly, the strikingly similar preferences of households in the four European cities investigated seem to justify strong EU and international policies.


2018 ◽  
Vol 2 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Togar W. S. Panjaitan ◽  
Paul Dargusch ◽  
Ammar A. Aziz ◽  
David Wadley

Around 600 Mt carbon dioxide equivalents (CO2e) of anthropogenic greenhouse gases (GHG) emission originates from energy production and consumption in Indonesia annually. Of this output, 40 Mt CO2e comes from cement production. This makes the cement industry a key sector to target in Indonesia’s quest to reduce its emissions by 26% by 2020. Substantial opportunities exist for the industry to reduce emissions, mainly through clinker substitution, alternative fuels, and the modernization of kiln technologies. However, most of these abatement options are capital intensive and considered as noncore business. Due to this, the private sector is unlikely to voluntarily invest in emission reduction unless it saves money, improves revenue, enhances the strategic position of the firm, or unless governments provide incentives or force adoption through regulatory and policy controls. In this study, we review the profile of the Indonesian cement industry and assess the carbon management and climate policy actions available to reduce emissions. The case highlights opportunities for improved carbon management in emission-intensive industries in developing countries.


2018 ◽  
Vol 31 ◽  
pp. 07001 ◽  
Author(s):  
Jati Utomo Dwi Hatmoko ◽  
Arif Hidayat ◽  
Apsari Setiawati ◽  
Stefanus Catur Adi Prasetyo

Road infrastructure in Indonesia is mainly dominated by flexible pavement type. Its construction process, however, has raised concerns in terms of its environment impacts. This study aims to track and measure the carbon footprint of flexible pavement. The objectives are to map the construction process in relation to greenhouse gas (GHG) emissions, to quantify them in terms of carbon dioxide equivalents (CO2e) as generated by the process of production and transportation of raw materials, and the operation of plant off-site and on-site project. Data collection was done by having site observations and interviews with project stakeholders. The results show a total emissions of 70.888 tonnes CO2e, consisting of 34.248 tonnes CO2e (48.31%) off-site activities and 36.640 tonnes CO2e (51.687%) on-site activities. The two highest CO2e emissions were generated by the use of plant for asphalt concrete laying activities accounted 34.827 tonnes CO2e (49.130%), and material transportation accounted 24.921 (35.155%). These findings provide a new perspective of the carbon footprint in flexible pavement and suggest the urgent need for the use of more efficient and environmentally friendly plant in construction process as it shows the most significant contribution on the CO2e. This study provides valuable understanding on the environmental impact of typical flexible pavement projects in Indonesia, and further can be used for developing green road framework.


HortScience ◽  
2017 ◽  
Vol 52 (3) ◽  
pp. 357-365 ◽  
Author(s):  
Dewayne L. Ingram ◽  
Charles R. Hall ◽  
Joshua Knight

Three scenarios for production of Buxus microphylla var. japonica [(Mull. Arg.) Rehder & E.H. Wilson] ‘Green Beauty’ marketed in a no. 3 container on the west coast of the United States were modeled based on grower interviews and best management practices. Life cycle inventories (LCIs) of input products, equipment use, and labor were developed from the protocols for those scenarios and a life cycle assessment (LCA) was conducted to determine impact of individual components on the greenhouse gas emissions (GHGs) and the subsequent carbon footprint (CF) of the product at the nursery gate and in the landscape. CF is expressed in global warming potential (GWP) for a 100-year period in units of kilograms of carbon dioxide equivalents (kg CO2e). The GWP of the plant from Scenario A (propagation to no. 1 to 3 container) was 2.198 kg CO2e with variable costs of $4.043. Scenario B (propagation to field to no. 3 container) would result in a GWP of 1.717 kg CO2e with variable costs of $2.880 and take a year longer in production than the other two models. The GWP of Scenario C (propagation to no. 1 to no. 2 to no. 3 containers) would be 3.364 kg CO2e with variable costs of $5.733. Containers, transplants/transplanting, irrigation, and fertilization input products and associated activities accounted for the greatest portion of GHG and variable costs in each scenario. Pruning, assembling/load trucks, pesticides, and chlorination were other important components to variable costs of each scenario but had little impact on GWP. Otherwise, the major contributors to GWP are also major contributors to cost.


Sign in / Sign up

Export Citation Format

Share Document