A Simplified Method for Field Evaluation of Solid Set Sprinkler Irrigation Systems

2010 ◽  
Vol 26 (4) ◽  
pp. 589-597 ◽  
Author(s):  
M. E. M. Elwadie ◽  
L. L. Mao ◽  
V. F. Bralts
Author(s):  
Xin Hui ◽  
Haijun Yan ◽  
Lin Zhang ◽  
Junying Chen

Abstract To improve the water application uniformity for sprinkler irrigation on sloping land, indoor tests were conducted on an artificial slope (slopes of 0, 0.05, 0.10 and 0.15) to evaluate the effects of two riser orientations, vertical (VO) and perpendicular (PO) to the slope, on the uniformity of sprinkler rotation, radius of throw, water distribution of an individual sprinkler and the overlapped water application uniformity (WAU). Compared with the VO, the PO could effectively improve the water distribution on sloping land and minimize the risk of soil erosion. Additionally, the PO was superior in the WAU, and a rectangular arrangement could dramatically enhance the WAU at smaller sprinkler spacing, while larger acceptable sprinkler spacing was accepted in a triangular arrangement. The riser orientation and sprinkler spacing had the most significant effect on the WAU, followed by the slope and sprinkler arrangement, suggesting that the adjustment of riser orientation or sprinkler spacing was helpful in improving the WAU. However, from the aspects of investment cost and installation convenience for irrigation projects, the method of PO was recommended. Therefore, when designing the sprinkler irrigation systems on the slope, choosing PO is the simplest and most effective way to achieve good irrigation uniformity.


2018 ◽  
Vol 31 (2) ◽  
pp. 370-378
Author(s):  
JÚLIO JUSTINO DE ARAÚJO ◽  
VANDER MENDONÇA ◽  
MARIA FRANCISCA SOARES PEREIRA ◽  
MATHEUS DE FREITAS SOUZA

ABSTRACT The banana tree is grown in an extensive tropical region throughout the world, usually by small producers. The present work had the objective of evaluating irrigation systems in banana production in the Açu-RN Valley, aiming at alternatives so that they can be recommended to farmers in the Açu Valley region. The experiment was carried out in the area of the School Farm of the IFRN Campus Ipanguaçu, located in the municipality of Ipanguaçu-RN. The experiment was carried out in a randomized complete block design with subdivided plots and eight replications. The irrigation systems were: irrigation, drip irrigation, micro sprinkler and alternative irrigation. The plots were composed of eight useful plants with spacing in double rows 4 x 2 x 2 m. Eight characteristics related to production were evaluated: bunch mass (MC); number of leaves (NP); number of fruits per cluster (NFC); mean mass of the leaves (MMP); diameter of the fruit of the second seed (DF2P); length of the fruit of the second seed (CF2P); mean fruit mass (MMF); productivity (Prod). The data were submitted to analysis of variance and the means were compared by the Tukey test at 5% of probability. In the first cycle of production the sprinkler irrigation system was the one that presented better results the productivity of the Pacovan banana tree; in the 3rd cycle the alternative irrigation system was the one that showed better results the productivity of the banana tree; where the electrical conductivity correlated with the sodium adsorption ratio in the irrigation water, contributed to a moderate limitation of use.


jpa ◽  
1988 ◽  
Vol 1 (3) ◽  
pp. 196-201 ◽  
Author(s):  
R. W. Elmore ◽  
D. E. Eisenhauer ◽  
J. E. Specht ◽  
J. H. Williams

1974 ◽  
Vol 17 (6) ◽  
pp. 1020-1024
Author(s):  
G. J. Hermann ◽  
G. M. McMaster ◽  
D. W. Fitzsimmons

2018 ◽  
Vol 38 (2) ◽  
pp. 188-196
Author(s):  
Jorge T. Tamagi ◽  
Miguel A. Uribe-Opazo ◽  
Marcio A. Vilas Boas ◽  
Jerry A. Johann ◽  
Luciana P. C. Guedes

1986 ◽  
Vol 18 (9) ◽  
pp. 185-195 ◽  
Author(s):  
A. Adin

Methods of irrigation are reviewed, including surface irrigation, sprinkler irrigation and drip irrigation, and the problems of these systems with regard to the quality of the water used are described. Surface irrigation does not suffer much from water quality problems, but both sprinkler irrigation and drip irrigation systems are more affected, the main problem being clogging of pumps, pipes and orifices. Clogging is usually due to a combination of suspended matter, chemical precipitation and biological growth. Current solutions through water treatment, and associated problems with this, are described, with examples given of typical strainers and filters. The key to the solution of clogging problems is a proper match between water quality of the source and within the distribution system, and the type ot treatment to be used, therefore, proper water quality monitoring is recommended. Direct granular filtration is the most preferaDle treatment process for drip irrigation systems.


Sign in / Sign up

Export Citation Format

Share Document