Effects of regulated deficit irrigation and phosphorus fertilizers on yield, water use efficiency and total soluble solids of tomato

2013 ◽  
Author(s):  
Mohamed Elsayed Abuarab ◽  
Mohamed Mohamed Shahien ◽  
Ahmed Mahrous Hassan
Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1685 ◽  
Author(s):  
Abdul Shabbir ◽  
Hanping Mao ◽  
Ikram Ullah ◽  
Noman Ali Buttar ◽  
Muhammad Ajmal ◽  
...  

Root morphology and its components’ behavior could show a considerable response under multiple water application points per plant to help the ultimate effect of fruit yield and fruit quality. In this study, a comparison of a single emitter per plant was made with two, three, and four emitters per plant under drip irrigation and two irrigation levels (full irrigation 100% and deficit irrigation 75% of crop evapotranspiration) to investigate their effects on physiological parameters, root, yield, and their associated components for potted cherry tomato under greenhouse conditions in Jiangsu-China. The experimental results showed that the plants cultivated in the spring-summer planting season showed significantly higher results than the fall-winter planting season due to low temperatures in the fall-winter planting season. However, the response root length, root average diameter, root dry mass, leaf area index, photosynthetic rate, transpiration rate, fruit unit fresh weight, the number of fruits, and pH were increased by multiple emitters per plant over a single emitter per plant, but total soluble solids decreased. Besides, a decreasing trend was observed by deficit irrigation for both planting seasons, and vice versa for the case for tomato total soluble solids. Due to an increase in measured parameters for multiple emitters per plant over a single emitter per plant, the yield, water use efficiency, and water use efficiency biomass significantly increased by 18.1%, 17.6%, and 15.1%, respectively. The deficit irrigation caused a decrease in the yield of 5% and an increase in water use efficiency and water use efficiency biomass of 21.4% and 22.9%, respectively. Two, three, and four emitters per plant had no significant effects, and the obtained results were similar. Considering the root morphology, yield, water use efficiency, water use efficiency biomass, and fruit geometry and quality, two emitters per plant with deficit irrigation are recommended for potted cherry tomato under greenhouse conditions. The explanation for the increased biomass production of the plant, yield, and water use efficiency is that two emitters per plant (increased emitter density) reduced drought stress to the roots, causing increased root morphology and leaf area index and finally promoting the plant’s photosynthetic activity.


2021 ◽  
Vol 9 (2) ◽  
pp. 113
Author(s):  
Kelly Nascimento Leite ◽  
Daniel Fonseca de Carvalho ◽  
Jose Maria Tarjuelo Martin- Benito ◽  
Geocleber Gomes de Sousa ◽  
Alfonso Dominguez Padilla

The present study aimed to validate the MOPECO crop simulation model and to determine a viable irrigation management for watermelon in the semiarid region of Northeast Brazil, using methodologies of optimized regulated deficit irrigation (ORDI) and constant deficit irrigation (CDI). The experiment was carried out during October to December 2013 and the second one from July to August 2014 in plots of land of producers in the Baixo Acaraú Irrigated Perimeter – Ceará, Brazil. Treatments were characterized by ORDI management (70, 80, 90% ETa/ETm ratio) and CDI management along the entire cycle (70, 80 and 90% ETm) and control treatment, irrigated with 100% of the water requirement of the crop (ETm). In terms of saving of water resources, the results showed that management with regulated deficit irrigation leads to favorable and economically viable results for the farmer, of water saving, especially in a situation of severe water scarcity, irrigation management with regulated water deficit (ORDI) can provide favorable and economically viable results for the farmer. The highest value of WUE (41.8 kg m-3) was obtained with the treatment of lowest water volume applied (352.1 L) in the second experiment, decreasing with the increase in the water volume used. The ORDI methodology represents a better water use efficiency for all treatments of deficit applied compared to CDI treatments. The difference of ORDI and CDI methodology provided an increase of up to 200% in the gross margin obtained with the exploration of the watermelon culture which represents a range of R$ 986.00 in profit in a situation of water scarcity, as in the case of the studied region, the strategy with water supply of 70% of ETa/ETm ratio regulated by phenological stage was recommended in order to obtain highest water use efficiency.


2015 ◽  
Vol 183 ◽  
pp. 13-22 ◽  
Author(s):  
Roberta Samara Nunes de Lima ◽  
Fábio Afonso Mazzei Moura de Assis Figueiredo ◽  
Amanda Oliveira Martins ◽  
Bruna Corrêa da Silva de Deus ◽  
Tiago Massi Ferraz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document