ESTIMATION OF TILE DRAINAGE CONTRIBUTION TO STREAMFLOW AND NUTRIENT LOADS AT THE WATERSHED SCALE BASED ON CONTINOUSLY MONITORED DATA

2002 ◽  
Author(s):  
Jennifer B. Suttles ◽  
George Vellidis ◽  
David Bosch ◽  
Richard Lowrance ◽  
E. Lynn Usery ◽  
...  

2011 ◽  
Vol 64 (9) ◽  
pp. 1767-1773 ◽  
Author(s):  
Wang Xiaoyan ◽  
Lin Qinhui

The objective of this paper is to study the impact of critical source area (CSA) within an Annualized AGricultural Non-Point Source pollution models (AnnAGNPS) simulation at medium- large watershed scale. The impact of CSA on terrain attributes is examined by comparing six sets of CSA (0.5, 1, 2, 4, 6 and 8 km2). The accuracy of AnnAGNPS stimulation on runoff, sediment and nutrient loads on these sets of CSA is further suggested in this paper. The results are as followed: (1) CSA has little effect on watershed area, and terrain altitude. The number of cell and reach decreases with the increase of CSA in power function regression curve. (2) The variation of CSA will lead to the uncertainty of average slope which increase the generalization of land characteristics. At the CSA range of 0.5–1 km2, there is little impact of CSA on slope. (3) Runoff amount does not vary so much with the variation of CSA whereas soil erosion and total nitrogen (TN) load change prominently. An increase of sediment yield is observed firstly then a decrease following later. There is evident decrease of TN load, especially when CSA is bigger than 6 km2. Total phosphorus load has little variation with the change of CSA. Results for Dage watershed show that CSA of 1 km2 is desired to avoid large underestimates of loads. Increasing the CSA beyond this threshold will affect the computed runoff flux but generate prediction errors for nitrogen yields. So the appropriate CSA will control error and make simulation at acceptable level.


2019 ◽  
Author(s):  
Mujen Wang ◽  
◽  
Catherine M. O'Reilly ◽  
Wondwosen Mekonnen Seyoum ◽  
Shalamar D. Armstrong ◽  
...  

2015 ◽  
Vol 44 (2) ◽  
pp. 486-494 ◽  
Author(s):  
Kevin W. King ◽  
Mark R. Williams ◽  
Norman R. Fausey

2019 ◽  
Vol 3 (1) ◽  
pp. 1-14
Author(s):  
Philip Brick ◽  
Kent Woodruff

This case explores the Methow Beaver Project (MBP), an ambitious experiment to restore beaver (Castor canadensis) to a high mountain watershed in Washington State, USA. The Pacific Northwest is already experiencing weather regimes consistent with longer term climate projections, which predict longer and drier summers and stronger and wetter winter storms. Ironically, this combination makes imperative more water storage in one of the most heavily dammed regions in the nation. Although the positive role that beaver can play in watershed enhancement has been well known for decades, no project has previously attempted to re-introduce beaver on a watershed scale with a rigorous monitoring protocol designed to document improved water storage and temperature conditions needed for human uses and aquatic species. While the MBP has demonstrated that beaver can be re-introduced on a watershed scale, it has been much more difficult to scientifically demonstrate positive changes in water retention and stream temperature, given hydrologic complexity, unprecedented fire and floods, and the fact that beaver are highly mobile. This case study can help environmental studies students and natural resource policy professionals think about the broader challenges of diffuse, ecosystem services approaches to climate adaptation. Beaver-produced watershed improvements will remain difficult to quantify and verify, and thus will likely remain less attractive to water planners than conventional storage dams. But as climate conditions put additional pressure on such infrastructure, it is worth considering how beaver might be employed to augment watershed storage capacity, even if this capacity is likely to remain at least in part inscrutable.


2009 ◽  
Author(s):  
Dan Isaak ◽  
Bruce Rieman ◽  
Dona Horan

Sign in / Sign up

Export Citation Format

Share Document