scholarly journals Multiscale analysis of instabilities in heterogeneous materials using ANM and multilevel FEM

Author(s):  
Saeid Nezamabadi ◽  
Hamid Zahrouni ◽  
Julien Yvonnet ◽  
Michel Potier-Ferry

In this study, we propose a numerical technique which combines a perturbation approach (asymptotic numerical method) and a multilevel finite element analysis. This procedure allows dealing with instability phenomena in the context of heterogeneous materials where buckling may occur at both macroscopic and/or microscopic scales. Different constitutive relations are applied and geometrical non-linearity is taken into account at both scales. Numerical examples involving instabilities at both micro and macro levels are presented.

2020 ◽  
Vol 60 (6) ◽  
pp. 1273-1283
Author(s):  
Honghao Wang ◽  
Boxun Wu ◽  
Takuya Higuchi ◽  
Jun Yanagimoto

2013 ◽  
Vol 275-277 ◽  
pp. 1296-1301
Author(s):  
Ji Wei Wang ◽  
Qin Qin Qiao ◽  
Fei Leng

It is one of the most important issues for finite element analysis of lining structures that how to describe anchor rod reasonably and effectively and simulate the interaction between rod and concrete or rock. Virtual nodes are constructed in concrete/rock element at the ends of anchor rod and bond-slip element is set between virtual nodes and beam element which describes anchor rod. An embedded combined element with bond slip and shear deformation is established through the transformation of nodal force at nodes of bond-slip element to those of concrete/rock element via shape functions. The element is convenient for meshing element because the location and direction of anchor rod are not necessary to be considered. Meanwhile, the element has the advantage of low computing cost. Finally, the validity and efficiency are verified by numerical examples.


2012 ◽  
Vol 476-478 ◽  
pp. 2463-2468 ◽  
Author(s):  
Ji Cheng Zhang ◽  
Jun Yang

In this paper, a constitutive relationship of the concrete core restrained by L-Shaped steel tube is put forward based on referring to the constitutive relations of core concrete in concrete-filled square steel tube columns, which takes the restraint of steel tube to concrete as an equivalent confinable effect coefficient . Load-deformation relationship of L-Shaped concrete-filled steel tubular column subjected to axial compression is analyzed by finite element analysis (using ABAQUS software). The predicted load versus deformation relationship cures are in good agreement with those of tests based on the finite element analysis, loads carried by steel tubes and concrete respectively during the loading process, as well as interactions between them are analyzed. Finally, influences of length-width ratio and width-thickness ratio on the interaction between steel tubes and concrete are investigated.


Author(s):  
Wei Zhang ◽  
Anil Erol ◽  
Saad Ahmed ◽  
Sarah Masters ◽  
Paris von Lockette ◽  
...  

Active origami designs, which incorporate smart materials such as electroactive polymers (EAPs) and magnetoactive elastomers (MAEs) into mechanical structures, have shown good promise in engineering applications. In this study, finite element analysis (FEA) models are developed using COMSOL Multiphysics software for two configurations that incorporate a combination of active and passive material layers, namely: 1) a single-notch unimorph folding configuration actuated using only external electric field and 2) a bimorph configuration which is actuated using both electric and magnetic (i.e. multifield) stimuli. Constitutive relations are developed for both electrostrictive and magnetoactive materials to model the coupled behaviors directly. Shell elements are adopted for their capacity of modeling thin films, reduction of computational cost and ability to model the intrinsic coupled behaviors in the active materials under consideration. A microstructure-based constitutive model for electromechanical coupling is introduced to capture the nonlinearity of the EAP’s relaxor ferroelectric response; the electrostrictive coefficients are then used as input in the constitutive modeling of the coupled behavior. The magnetization of the MAE is measured by experiment and then used to calculate magnetic torque under specified external magnetic field. The objective of the study is to verify the effectiveness of the constitutive models to simulate multi-field coupled behaviors of the active origami configurations. Through quantitative comparisons, simulation results show good agreement with experimental data, which is a good validation of the shell models. By investigating the impact of material selection, location, and geometric parameters, FEA can be used in design, reducing trial-and-error iterations in experiments.


2014 ◽  
Vol 501-504 ◽  
pp. 2515-2519
Author(s):  
Jiong Zhang ◽  
Qi Qing Huang ◽  
Zhan Qu

In this paper, the equivalent inclusion method is used to calculate the elastic fields of a two-dimensional plate containing any number of ellipitical inhomogeneities. Both the interior and the exterior Eshelbys tensors are used in this method. Numerical examples are given to assess the performance of the presented method. The solutions obtained with this method have been checked and confirmed by the finite element analysis results.


Sign in / Sign up

Export Citation Format

Share Document